Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (9): 129-135    DOI: 10.11868/j.issn.1001-4381.2016.000714
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
航空用7475-T7351铝合金厚板耐腐蚀性能
刘铭1,2, 李惠曲1,2, 陈军洲1,2, 李国爱1,2, 陈高红1,2
1 北京航空材料研究院, 北京 100095;
2 北京市先进铝合金材料及应用工程技术研究中心, 北京 100095
Corrosion Resistance of 7475-T7351 Aluminum Alloy Plate for Aviation
LIU Ming1,2, LI Hui-qu1,2, CHEN Jun-zhou1,2, LI Guo-ai1,2, CHEN Gao-hong1,2
1 Beijing Institute of Aeronautical Materials, Beijing 100095, China;
2 Beijing Engineering Research Center of Advanced Aluminum Alloys and Applications, Beijing 100095, China
全文: PDF(4268 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 研究航空用7475-T7351铝合金厚板晶间腐蚀及剥落腐蚀性能,并利用金相和透射电镜分析该合金的腐蚀行为。结果表明:7475铝合金无明显晶间腐蚀,剥落腐蚀程度由表层的EA级递增至心部EC级。7475铝合金厚板发生剥落腐蚀主要是由于合金为片状组织,同时晶界存在由电偶腐蚀构成的通路,晶界腐蚀产物体积膨胀产生楔入力使晶间腐蚀沿着与表面平行的方向发展并逐步演变为剥落腐蚀。再结晶程度由表层到中心逐渐降低,晶粒长宽比增加,剥落腐蚀倾向增大,导致表层到心部的剥落腐蚀程度增加。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘铭
李惠曲
陈军洲
李国爱
陈高红
关键词 7475铝合金晶间腐蚀剥落腐蚀再结晶    
Abstract:The intergranular corrosion and exfoliation corrosion properties of 7475-T7351 aluminum alloy plate for aviation were investigated, and the corrosion behaviors of the alloy were analyzed by metallographic analysis(MA) and transmission electron microscope(TEM). The results show that no obvious intergranular corrosion is observed, but exfoliation corrosion grade of 7475-T7351 aluminum alloy increases from EA on surface to EC in the core. The exfoliation corrosion of 7475 alloy plate is mainly because of the typical lamellar structure, and the pathway formed by galvanic corrosion on grain boundary. The expansion of grain boundary corrosion product volume produces the wedging force,makes intergranular corrosion grow along the direction in parallel with the surface,and then gradually evolves into exfoliation corrosion. The degree of recrystallization decreases gradually from the surface to center, and the grain length-to-width radio increases, which inclines to exfoliation corrosion and leads to the exfoliation corrosion grade increasing from surface to center.
Key words7475 aluminum alloy    intergranular corrosion    exfoliation corrosion    recrystallization
收稿日期: 2016-06-13      出版日期: 2017-09-16
中图分类号:  TG146.2+1  
通讯作者: 刘铭(1982-),女,博士,高级工程师,主要从事高性能航空铝合金及工艺研究,联系地址:北京市81信箱2分箱(100095),E-mail:mingliu5753@163.com     E-mail: mingliu5753@163.com
引用本文:   
刘铭, 李惠曲, 陈军洲, 李国爱, 陈高红. 航空用7475-T7351铝合金厚板耐腐蚀性能[J]. 材料工程, 2017, 45(9): 129-135.
LIU Ming, LI Hui-qu, CHEN Jun-zhou, LI Guo-ai, CHEN Gao-hong. Corrosion Resistance of 7475-T7351 Aluminum Alloy Plate for Aviation. Journal of Materials Engineering, 2017, 45(9): 129-135.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000714      或      http://jme.biam.ac.cn/CN/Y2017/V45/I9/129
[1] 王涛,尹志民. 高强变形铝合金的研究现状和发展趋势[J]. 稀有金属, 2006,30(2):197-202. WANG T, YIN Z M. Research status and development trend of ultra-high strength aluminum alloys[J]. Chinese Journal of Rare Metals, 2006,30(2):197-202.
[2] 王洪斌,黄进峰,杨滨,等. Al-Zn-Mg-Cu系超高强度铝合金的研究现状与发展趋势[J]. 材料导报,2003,17(9):1-4. WANG H B, HUANG J F, YANG B, et al. Current status and future directions of ultrahigh strength Al-Zn-Mg-Cu aluminum alloys[J]. Materials Review, 2003,17(9):1-4.
[3] HEINZ A, HASZLER A, KEIDEL C, et al. Recent development in aluminum alloys for aerospace applications[J]. Materials Science and Engineering:A, 2000, 280:102-107.
[4] ZANG J X, ZHANG K, DAI S L. Precipitation behavior and properties of a new high strength Al-Zn-Mg-Cu alloy[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(11):2638-2644.
[5] HIRSCH J, KAHAUSEN K F, LOHTE L. Advances in industrial aluminum research and development[J]. Materials Science Forum, 2002, 396/402:1721-1730.
[6] NAUGHTAN D M,WORSFOLD M,ROBINSON M J.Corrosion product force measurements in the study of exfoliation and stress corrosion cracking in high strength aluminum alloys[J].Corrosion Science,2003,45(10):2377-2389.
[7] ROBERT E, SANDERS J R. Technology innovation in aluminum products[J]. JOM:Journal of the Minerals, Metals and Materials Society, 2001, 53(2):21-25.
[8] WILLIAM C, JOHN L, JAMES S. Aluminum alloys for aircraft structures[J]. Advanced Materials & Processes, 2002, 160(12):27-29.
[9] ZUO Y Y, DAO X L, MENG Y, et al.Effects of prior corrosion with and without stress on the mechanical properties of 7475-T761 aluminum alloy[J]. Acta Metallurgica Sinica, 2015, 28(5):608-613.
[10] WILLIAMS J C,STARKE E A Jr.Progress in structural materials for aerospace systems[J].Acta Materialia,2003,51(19):5775-5799.
[11] RAJESH K G, HRISHIKESH D, TAPAN K P. Influence of processing parameters on induced energy, mechanical and corrosion properties of FSW butt joint of 7475 AA[J].Journal of Materials Engineering and Performance, 2012,21(8):1645-1654.
[12] SOUZA S D, YOSHIKAWA D S, IZALTINO W A S, et al.Nanostructured surface pre-treatment based on self-assembled molecules for corrosion protection of alclad 7475-T761 aluminum alloy[J].Materials and Corrosion, 2011, 62(10):913-919.
[13] TSAI T C, CHANG J C, CHUANG T H. Stress corrosion cracking of superplastically formed 7475 aluminum alloy[J].Metallurgical and Materials Transactions A, 1997, 28(10):2113-2121.
[14] TSAI T C, CHUANG T H. Role of grain size on the stress corrosion cracking of 7475 aluminum alloys[J].Materials Science and Engineering:A, 1997, 225(1/2):135-144.
[15] KONG D J, WANG J C. Salt spray corrosion and electrochemical corrosion properties of anodic oxide film on 7475 aluminum alloy[J]. Journal of Alloys and Compounds, 2015, 632:286-290.
[16] 刘铭,张坤,黄敏,等. 7475-T7351铝合金抗疲劳性能研究[J].稀有金属,2009, 33(5):626-630. LIU M, ZHANG K, HUANG M, et al. Fatigue damage resistance characteristics of 7475-T7351 aluminum alloy[J]. Chinese Journal of Rare Metals, 2009, 33(5):626-630.
[17] 段水亮.合金元素和热处理对7475铝合金组织与性能的影响[D].长沙:中南大学,2008. DUAN S L. The effects of alloying elements and various heat treatments process on mechanical properties and microstructural evolution of 7475 aluminum alloys[D].Changsha:Central South University,2008.
[18] 程勇胜,郑子樵,李秋菊.时效制度对7475铝合金组织与性能的影响[J].轻合金加工技术,2001,29(6):40-44. CHENG Y S, ZHENG Z Q, LI Q J.Effects of ageing on microstructure and properties of 7475 aluminium alloy[J]. Light Alloy Fabrication Technology, 2001, 29(6):40-44.
[19] 李海宏,刘振伟,董超芳.7475铝合金薄壁管时效工艺及应力腐蚀性能研究[J].轻合金加工技术,2013,41(3):54-56. LI H H, LIU Z W, DONG C F.Study on aging technology and stress corrosion of 7475 aluminum alloy with thin-wall tube[J]. Light Alloy Fabrication Technology, 2013, 41(3):54-56.
[20] SINYAVSKⅡ V S, UIANOVA V V, KALINLIN V D. On the mechanism of intergranular corrosion of aluminum alloys[J]. Protection of Metals, 2004, 40(5):481-490.
[21] RAMGOPAL T, GOUMA P I,FRANKEL G S.Role of grain-boundary precipitates and solute-depleted zone on the intergranular corrosion of aluminum alloy 7150[J].Corrosion,2002,58(8):687-697.
[22] 何正林,高文理,陆政,等.热处理对7A85铝合金组织和性能的影响[J].材料工程,2015,43(8):13-18. HE Z L,GAO W L,LU Z, et al. Effects of heat treatment on microstructure and properties of 7A85 aluminium alloy[J].Journal of Materials Engineering, 2015, 43(8):13-18.
[23] VALIEV R Z,MURASHKIN Y M,SABIROV I.A nanostructural design to produce high-strength Al alloys with enhanced electrical conductivity[J]. Scripta Materialia,2014,76:13-16.
[24] ROBINSON M J, JACKSON N C. Exfoliation corrosion of high strength Al-Cu-Mg alloys:effect of grain structure[J].British Corrosion Journal,2014,34(1):45-49.
[25] KELLY D J, ROBINSON M J. Influence of heat treatment and grain shape on exfoliation corrosion of Al-Li alloy 8090[J]. Corrosion,1993,49(10):787-795.
[26] 赵凤,鲁法云,郭富安.两种7050铝合金厚板的组织与性能[J].航空材料学报,2015,35(2):64-71. ZHAO F, LU F Y, GUO F A. Comparative analysis of microstructures and properties of two kinds of thick plates of 7050-T7451 aluminum alloy[J]. Journal of Aeronautical Materials, 2015, 35(2):64-71.
[27] 宁爱林,刘志义,郑青春,等.分级固溶对7A04铝合金组织与性能的影响[J].中国有色金属学报, 2004, 14(7):1211-1216. NING A L, LIU Z Y, ZHENG Q C, et al. Effects of progressive solution treatment on microstructure and mechanical properties of 7A04 aluminum alloy[J].The Chinese Journal of Nonferrous Metals, 2004, 14(7):1211-1216.
[1] 韩梅, 谢洪吉, 李嘉荣, 董建民, 岳晓岱, 喻健, 杨亮. 再结晶对DD6单晶高温合金轴向高周疲劳性能的影响[J]. 材料工程, 2019, 47(6): 161-168.
[2] 史振学, 刘世忠, 赵金乾, 王效光, 李嘉荣. 基于不同原始组织预设变形第四代单晶高温合金的再结晶行为[J]. 材料工程, 2019, 47(5): 107-114.
[3] 黄利, 黄光杰, 吴晓东, 曹玲飞, 李佳. 预处理工艺对双辊铸轧3003铝合金再结晶行为的影响[J]. 材料工程, 2019, 47(4): 135-142.
[4] 赵双赞, 燕绍九, 陈翔, 洪起虎, 李秀辉, 戴圣龙. 石墨烯纳米片增强铝基复合材料的动态力学行为[J]. 材料工程, 2019, 47(3): 23-29.
[5] 侯琼, 陶宇, 贾建. 第四代粉末高温合金热变形后的“项链”组织[J]. 材料工程, 2019, 47(3): 94-100.
[6] 朱怀沈, 聂义宏, 赵帅, 王宝忠. 镍基617合金动态再结晶微观组织演变与预测[J]. 材料工程, 2018, 46(6): 80-87.
[7] 黄元春, 许天成, 肖政兵, 任贤魏, 贾广泽. 弥散相对3003铝合金再结晶晶粒尺寸的影响[J]. 材料工程, 2018, 46(6): 65-72.
[8] 石晶晶, 叶朋, 崔凯旋, 汪炳叔, 邓丽萍, 王晨, 李强. 孪晶诱发的AZ31镁合金静态再结晶行为[J]. 材料工程, 2018, 46(11): 134-140.
[9] 马琳, 李伟, 白娇娇, 赵丰停. 粉末冶金Ti-14Mo-2.1Ta-0.9Nb-7Zr合金热变形行为[J]. 材料工程, 2018, 46(10): 47-54.
[10] 刘恭涛, 刘志桥, 杨平, 毛卫民. 初次再结晶组织和渗氮量对低温渗氮取向硅钢二次再结晶行为的影响[J]. 材料工程, 2018, 46(1): 16-24.
[11] 杨志强, 刘正东, 何西扣, 刘宁. 反应堆压力容器用SA508Gr.4N钢的热变形行为[J]. 材料工程, 2017, 45(8): 88-95.
[12] 梁瑞洋, 杨平, 毛卫民. 冷轧压下率及初始高斯晶粒取向度对超薄取向硅钢织构演变与磁性能的影响[J]. 材料工程, 2017, 45(6): 87-96.
[13] 侯天宇, 李萍, 陈雷, 赵杰, 李廷举. 304奥氏体不锈钢晶间腐蚀敏感性的非线性超声表征[J]. 材料工程, 2017, 45(10): 132-137.
[14] 张坤, 臧金鑫, 陈军洲, 伊琳娜, 汝继刚, 康唯. 新型Al-Zn-Mg-Cu合金热变形组织演化[J]. 材料工程, 2017, 45(1): 14-19.
[15] 刘晓艳, 王召朋, 龙亮, 张喜亮, 崔好选, 高飞. Mg与Ag含量对Al-Cu-Mg-Ag新型耐热铝合金晶间腐蚀性能的影响[J]. 材料工程, 2016, 44(9): 68-75.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn