Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (5): 72-78    DOI: 10.11868/j.issn.1001-4381.2016.000812
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
大尺寸TiAl/Ti3Al微叠层超薄板制备和力学性能
申造宇, 黄光宏, 何利民, 牟仁德, 李建平
中国航发北京航空材料研究院 航空材料先进腐蚀与 防护重点实验室, 北京 100095
Preparation and Mechanical Properties of Large-sized TiAl/Ti3Al Microlaminated Thin Sheets
SHEN Zao-yu, HUANG Guang-hong, HE Li-min, MU Ren-de, LI Jian-ping
Key Laboratory of Advanced Corrosion and Protection for Aviation Materials, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
全文: PDF(3198 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用电子束物理气相沉积(EB-PVD)制备大尺寸超薄TiAl/Ti3Al微叠层复合材料。利用XRD和SEM对材料的微观结构与相组成进行分析;对热等静压处理前后的试样进行拉伸实验研究;同时,采用真空热处理的方法研究微叠层在不同温度下的结构演变和微叠层材料层状结构的退化机理。结果表明:微叠层具有明显的层状结构,由α2-Ti3Al和γ-TiAl相组成;经热等静压处理后的试样具有较高的抗拉强度和较好的伸长率,断裂方式由脆性断裂转变为具有一定韧性的解理断裂和脆性断裂的混合断裂方式;扩散温度和Al元素的浓度分布直接决定了微叠层的相结构与形貌的变化。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
申造宇
黄光宏
何利民
牟仁德
李建平
关键词 电子束物理气相沉积TiAl/Ti3Al微叠层微观结构力学性能    
Abstract:Large-sized TiAl/Ti3Al multi-layered composite thin sheet was prepared by electron beam physical vapor deposition technology (EB-PVD). The phase composition and microstructure were analyzed by XRD and SEM. After hot isostatic pressing, samples were evaluated with static tensile test. The breakdown of layered structure was investigated by the high temperature annealing according to different temperature. The results show that the prepared material with visible lamellar structure is composed of α2-Ti3Al and γ-TiAl phases. The sample after hot isostatic pressing has a higher tensile strength and a good characteristic of tensile elongation. The fracture mode is transformed from brittle fracture into a mixed mode consisting of intergranular fracture and ductile deformation fracture. Furthermore, the heat treatment temperature and the diffusion of Al play a key role in the evolution of structure and morphology.
Key wordsEB-PVD    TiAl/Ti3Al microlaminate    microstructure    mechanical property
收稿日期: 2016-07-06      出版日期: 2018-05-16
中图分类号:  TG146.2  
通讯作者: 申造宇(1987-),男,博士研究生,工程师,研究方向:新型热障涂层材料及微叠层材料,联系地址:北京市8l信箱5分箱(100095),E-mail:shenzaoyu@163.com     E-mail: shenzaoyu@163.com
引用本文:   
申造宇, 黄光宏, 何利民, 牟仁德, 李建平. 大尺寸TiAl/Ti3Al微叠层超薄板制备和力学性能[J]. 材料工程, 2018, 46(5): 72-78.
SHEN Zao-yu, HUANG Guang-hong, HE Li-min, MU Ren-de, LI Jian-ping. Preparation and Mechanical Properties of Large-sized TiAl/Ti3Al Microlaminated Thin Sheets. Journal of Materials Engineering, 2018, 46(5): 72-78.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000812      或      http://jme.biam.ac.cn/CN/Y2018/V46/I5/72
[1] HEATHCOTE J,ODETTE G R,LUCAS G E,et al.On the micromechanics of low temperature strength and toughness of intermetallic/metallic microlaminate composites[J].Acta Materialia,1996,44(11):4289-4299.
[2] 曹义,程海峰,肖加余,等.美国金属热防护系统研究进展[J].宇航材料工艺,2003(3):9-12.CAO Y,CHENG H F,XIAO J Y,et al.An introduction to American metallic TPS research work[J].Aerospace Materials&Technology,2003(3):9-12.
[3] 申造宇,黄光宏,何利民,等.表面处理对热障涂层寿命及失效机理的影响研究[J].稀有金属材料与工程,2016,45(3):776-781.SHEN Z Y,HUANG G H,HE L M,et al.Effect of surface treatments on lifetime and failure mechanism of thermal barrier coatings[J].Rare Metal Materials and Engineering,2016,45(3):776-781.
[4] 马李,何录菊,邵先亦,等.电子束沉积TiAl合金的微观形貌及组织结构稳定性[J].材料工程,2016,44(1):89-95.MA L,HE L J,SHAO X Y,et al.Micro-morphology and microstructure stability of TiAl alloy deposited by electronic beam[J].Journal of Materials Engineering,2016,44(1):89-95.
[5] 朱春雷,李胜,张继.有利于铸造TiAl合金增压器涡轮叶片可靠性的组织设计[J].材料工程,2017,45(6):36-42.ZHU C L,LI S,ZHANG J.Microstructure design for reliability of turbocharger blade of cast TiAl based alloy[J].Journal of Materials Engineering,2017,45(6):36-42.
[6] WAS G S,FOECKE T.Deformation and fracture in microlaminates[J].Thin Solid Films,1996,286(1/2):1-31.
[7] LAPIN J.Creep behavior of a cast TiAl-based alloy for industrial applications[J].Intermetallics,2006,14(2):115-122.
[8] 章德铭,陈贵清,韩杰才,等.EB-PVD制备γ-TiAl基合金薄板的研究[J].航空材料学报,2006,26(4):35-38.ZHANG D M,CHEN G Q,HAN J C,et al.Research on gamma TiAl-based alloy sheet fabricated by EB-PVD[J].Journal of Aeronautical Materials,2006,26(4):35-38.
[9] CAO H C,LOFVANDER J P A,EVANS A G,et al.Mechanical properties of an in situ synthesized Nb/Nb3Al layered composite[J].Materials Science and Engineering:A,1994,185(1/2):87-95.
[10] WARD-CLOSE C M,FROES F H.Developments in the synthesis of lightweight metals[J].JOM,1994,46(1):28-31.
[11] KIM Y W.Intermetallic alloys based on gamma titanium aluminide[J].JOM,1989,41(7):24-30.
[12] 岳云龙,吴海涛,王志杰,等.TiAl金属间化合物的研究进展[J].济南大学学报(自然科学版),2004,18(1):31-34.YUE Y L,WU H T,WANG Z J,et al.Development of studies of TiAl intermetallics[J].Journal of University of Jinan (Science and Technology),2004,18(1):31-34.
[13] MATAGE P A.Deformation of crack-bridging ductile reinforcements in toughened brittle materials[J].Acta Metallurgica,1989,37(12):3349-3359.
[14] MA L,SUN Y,HE X D.Preparation and performance of large-sized Ti/Ti-Al microlaminated composite[J].Rare Metal Materials and Engineering,2008,37(2):325-329.
[15] 张跃,褚武扬,王燕斌,等.TiAl型金属间化合物解理断口的纳米尺度研究[J].金属学报,1995,31(5):191-196.ZHANG Y,CHU W Y,WANG Y B,et al.Study of cleavage fracture surface of TiAl alloys in nanometer scale[J].Acta Metallurgica Sinica,1995,31(5):191-196.
[16] 章德铭,陈贵清,孟松鹤,等.电子束物理气相沉积TiAl基合金薄板的物相及显微分析[J].稀有金属材料与工程,2007,36(6):973-976.ZHANG D M,CHEN G Q,MENG S H,et al.Phase composition and microanalysis of TiAl-based alloys sheet by electron beam-physical vapor deposition[J].Rare Metal Materials and Engineering,2007,36(6):973-976.
[17] 申造宇,黄光宏,何利民,等.大尺寸TiAl/Ti3Al微叠层薄板制备与热稳定性研究[J].材料研究学报,2014,28(4):314-320.SHEN Z Y,HUANG G H,HE L M,et al.Preparation and thermal stability of large-sized TiAl/Ti3Al micro-laminated thin sheets[J].Chinese Journal of Materials Research,2014,28(4):314-320.
[18] ROWE R G,SKELLY D W,LARSEN M,et al.Microlaminated high temperature intermetallic composites[J].Scripta Metallurgica et Materialia,1994,31(11):1487-1492.
[19] ODETTE G R,CHAO B L,SHECKHERD J W,et al.Ductile phase toughening mechanisms in a TiAl-TiNb laminate composite[J].Acta Metallurgica et Materialia,1992,40(9):2381-2389.
[20] 董成利,于慧臣,焦泽辉,等.一种TiAl合金高温低循环疲劳性能及失效机理[J].航空材料学报,2017,37(5):77-82.DONG C L,YU H C,JIAO Z H,et al.High temperature low cycle fatigue properties and failure mechanism of a TiAl alloy[J].Journal of Aeronautical Materials,2017,37(5):77-82.
[21] HILLERT M.On the theory of normal and abnormal grain growth[J].Acta Metallurgica,1965,13(3):227-338.
[22] 万文娟,韩波,韩伟,等.铸造TiAl合金疲劳寿命统计分布[J].航空材料学报,2016,36(4):71-77.WAN W J,HAN B,HAN W,et al.Statistical distribution of fatigue life for cast TiAl alloy[J].Journal of Aeronautical Materials,2016,36(4):71-77.
[1] 杨旭东, 安涛, 邹田春, 巩天琛. 湿热环境对碳纤维增强树脂基复合材料力学性能的影响及其损伤机理[J]. 材料工程, 2019, 47(7): 84-91.
[2] 王聃, 陶德华, 黄秀玲, 华子恺. 聚甲基丙稀酸羟乙酯甘油凝胶仿软骨材料的制备与性能[J]. 材料工程, 2019, 47(7): 71-75.
[3] 刘文祎, 徐聪, 刘茂文, 肖文龙, 马朝利. 稀土元素Gd对Al-Si-Mg铸造合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(6): 129-135.
[4] 王飞云, 金建军, 江志华, 王晓震, 胡春文. 热处理温度对新型马氏体时效不锈钢微观组织和性能的影响[J]. 材料工程, 2019, 47(6): 152-160.
[5] 陈海龙, 杨学锋, 王守仁, 鹿重阳, 吴元博. 改性酚醛树脂陶瓷摩擦材料的摩擦磨损性能[J]. 材料工程, 2019, 47(6): 108-113.
[6] 闫钊鸣, 张治民, 杜玥, 张冠世, 任璐英. 均匀化处理对Mg-13Gd-3.5Y-2Zn-0.5Zr镁合金组织和力学性能的影响[J]. 材料工程, 2019, 47(5): 93-99.
[7] 薛子明, 雷卫宁, 王云强, 钱海峰, 李奇林. 超临界条件下脉冲占空比对石墨烯复合镀层微观结构和性能的影响[J]. 材料工程, 2019, 47(5): 53-62.
[8] 李惠, 肖文龙, 张艺镡, 马朝利. 多重结构Ti-B4C/Al2024复合材料的组织和力学性能[J]. 材料工程, 2019, 47(4): 152-159.
[9] 崔岩, 项俊帆, 曹雷刚, 杨越, 刘园. 碳化硅颗粒表面吸附质对铝基复合材料制备及力学性能的影响[J]. 材料工程, 2019, 47(4): 160-166.
[10] 李亚锋, 礼嵩明, 黑艳伟, 邢丽英, 陈祥宝. 太阳辐照对芳纶纤维及其复合材料性能的影响[J]. 材料工程, 2019, 47(4): 39-46.
[11] 赵双赞, 燕绍九, 陈翔, 洪起虎, 李秀辉, 戴圣龙. 石墨烯纳米片增强铝基复合材料的动态力学行为[J]. 材料工程, 2019, 47(3): 23-29.
[12] 李灿, 陈文琳, 雷远. 微量Sr及均匀化工艺对Al-Mg-Si-Cu-Mn变形铝合金铸态组织与性能的影响[J]. 材料工程, 2019, 47(2): 90-98.
[13] 李秀辉, 燕绍九, 洪起虎, 赵双赞, 陈翔. 石墨烯添加量对铜基复合材料性能的影响[J]. 材料工程, 2019, 47(1): 11-17.
[14] 孟祥龙, 衣明东, 肖光春, 陈照强, 许崇海. 石墨烯纳米片增韧Al2O3基纳米复合陶瓷刀具材料[J]. 材料工程, 2019, 47(1): 25-31.
[15] 陈刚, 王璐, 杨静, 李强, 吕品, 马胜国. Al0.1CoCrFeNi高熵合金的力学性能和变形机理[J]. 材料工程, 2019, 47(1): 106-111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn