Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (3): 41-47    DOI: 10.11868/j.issn.1001-4381.2016.000848
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
树脂基Fe纳米粒子及碳纤维复合吸波平板的制备与性能
周远良, 赛义德, 张黎, 贾韦迪, 段玉平, 董星龙
大连理工大学 材料科学与工程学院 三束材料改性教育部重点实验室, 辽宁 大连 116024
Preparation and Performance of Resin-based Fe Nanoparticles/Carbon Fibers Microwave Absorbing Composite Plates
ZHOU Yuan-liang, SHAH Syed, ZHANG Li, MUHMMAD Javid, DUAN Yu-ping, DONG Xing-long
Key Laboratory of Materials Modification by Laser, Ion and Electron Beams(Ministry of Education), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
全文: PDF(4413 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 以Fe纳米粒子(Fe NPs)为吸波剂,偶联剂KH550为表面改性剂,碳纤维(CFs)作为增强及电磁波反射相,环氧树脂(ER)作为基体,制备多种吸波平板并对其综合性能及相关机制进行研究。结果表明:平板的吸波性能随Fe NPs和CFs含量的增加而提高,吸收剂浓度梯度分布有助于形成特定频段的共振吸收;平板对电磁波损耗具有明显的各向异性,表现为CFs垂直电磁波入射方向时性能优于平行情况,当Fe NPs的含量为30%(质量分数,下同),CFs为5.52%,板厚为4.56mm时,最小反射损耗为-26.8dB(4.9GHz);同时,CFs可改善平板的抗弯性能,当Fe NPs为30%时,弯曲强度相比于纯树脂时仅降低了5.81%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周远良
赛义德
张黎
贾韦迪
段玉平
董星龙
关键词 Fe纳米粒子碳纤维环氧树脂浓度梯度微波吸收性能    
Abstract:A series of Fe NPs/CFs/ER nanocomposite plates were prepared by using Fe nanoparticles as microwave absorbent, the surface modification of as-prepared Fe nanoparticles was carried out by using silane coupling agents (KH-550), carbon fibers were used to enhance the reflection of electromagnetic waves inside and mechanical properties. The results show that microwave absorption of nanocomposite plates increases with increasing of mass percentage of Fe nanoparticles and carbon fibers,their gradient concentration results in resonance phenomena in specific frequency region.The microwave absorption property is anisotropic, the properties of at the vertical direction of carbon fibers towards incident wave are better than the parallel case, the minimum reflectivity peak value of the nanocomposites with 30%(mass fraction, the same as below) of Fe NPs and 5.52% of CFs reaches -26.8dB at 4.9GHz with the matching thickness of 4.56mm.CFs can maintain the bending properties of nanocomposites effectively, the bending strength of the nanocomposite with 30% Fe NPs is just lower than that with 0% Fe NPs by 5.81%.
Key wordsFe nanoparticle    carbon fiber    epoxy resin    gradient concentration    microwave absorbing property
收稿日期: 2016-07-13      出版日期: 2018-03-20
中图分类号:  TB333  
基金资助: 
通讯作者: 董星龙(1965-),男,教授,博士,主要研究方向为纳米复合材料的制备与性能,联系地址:辽宁省大连市甘井子区大连理工大学三束材料改性教育部重点实验室(116024),E-mail:dongxl@dlut.edu.cn     E-mail: dongxl@dlut.edu.cn
引用本文:   
周远良, 赛义德, 张黎, 贾韦迪, 段玉平, 董星龙. 树脂基Fe纳米粒子及碳纤维复合吸波平板的制备与性能[J]. 材料工程, 2018, 46(3): 41-47.
ZHOU Yuan-liang, SHAH Syed, ZHANG Li, MUHMMAD Javid, DUAN Yu-ping, DONG Xing-long. Preparation and Performance of Resin-based Fe Nanoparticles/Carbon Fibers Microwave Absorbing Composite Plates. Journal of Materials Engineering, 2018, 46(3): 41-47.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000848      或      http://jme.biam.ac.cn/CN/Y2018/V46/I3/41
[1] TYAGIV K, LO S L. Microwave irradiation:a sustainable way for sludge treatment and resource recovery[J]. Renewable Sustainable Energy Reviews, 2013, 18:288-305.
[2] MA J J, ZHAN M S, WANG K. Ultralight weight silver nanowires hybrid polyimide composite foams for high-performance electromagnetic interference shielding[J].ACS Applied Materials & Interfaces,2015, 7:563-576.
[3] WANG G Z, GAO Z, TANG S M, et al. Microwave absorption properties of carbon nanocoilscoated with highly controlled magnetic materials by atomic layer deposition[J]. ACS Nano, 2012, 6:11009-11017.
[4] 刘渊,刘祥萱,王瑄军.铁氧体基核壳结构复合吸波材料研究进展[J]. 材料工程,2014(7):98-106. LIU Y, LIU X X, WANG X J. Research progress in ferrite based core-shell structured composites microwave absorb materials[J]. Journal of Materials Engineering, 2014(7):98-106.
[5] 冯永宝,唐传明,丘泰. Fe85Si9.6Al5.4合金的制备、表征及其低频吸波性能[J]. 材料工程, 2014(2):1-6. FENG Y B, TANG C M, QIU T. Preparation, characterization and microwave absorbing properties of Fe85Si9.6Al5.4 alloys in the low frequency range[J]. Journal of Materials Engineering, 2014(2):1-6.
[6] ZHANG W Q, ZHANG D Y. EM-wave absorption properties of hollow spiral iron particles[J].Journal of Magnetism and Magnetic Materials,2015, 396:169-171.
[7] 刘顺华, 刘军民, 董星龙. 电磁波屏蔽及吸波材料[M]. 北京:化学工业出版社, 2007. LIU S H, LIU J M, DONG X L.Electromagnetic shielding and absorbing materials[M]. Beijing:Chemical Industry Press,2007.
[8] CHERAKU D R, RAO G S. Estimation of reflectivity and shielding effectiveness of three layered laminate electromagnetic shield at X-band[J]. Progress in Electromagnetics Research B, 2010, 20(20):205-223.
[9] 徐建国, 李万富, 黄长庆. 基于遗传算法的介电梯度碳纳米管/环氧树脂吸波材料优化设计[J].功能材料, 2010,41(增刊1):155-158. XU J G, LI W F, HUANG C Q, Permittivity-grads wave-absorbing carbon nanotubes/epoxy resin composites optimization by genetic algorithm[J].Functional Materials,2010, 41(Suppl 1):155-158.
[10] 刘志宾, 朱正吼,徐雪娇, 等. 铁氧体Ba(Zn0.65Co0.35)Fe16O27/环氧树脂复合材料板吸波性能与优化[J]. 功能材料, 2011, 42(1):124-127. LIU Z B, ZHU Z H, XU X J, et al. The absorbing properties and optimization of the Ba(Zn0.65Co0.35)Fe16O27 powders/M-glass fibers/epoxy composites panels[J]. Functional Materials, 2011,42(1):124-127.
[11] CHEN L Y,DUAN Y P, LIU L D, et al. Influence of SiO2fillers on microwave absorption properties of carbonyl iron/carbon black double-layer coatings[J]. Materials & Design, 2011, 32(2):570-574.
[12] SNOEK J L. New developments in ferro-magnetic materials[M]. Amsterdam:Elsevier, 1947.
[13] LU B, DONG X L, HUANG H, et al. Microwave absorption properties of the core/shell-type iron and nickel nanoparticles[J]. Journal of Magnetism and Magnetic Materials, 2008, 320(6):1106-1111.
[14] LU B, HUANG H, DONG X L, et al. Influence of alloy components on electromagnetic characteristics of core/shell-type Fe-Ni nanoparticles[J]. Journal of Applied Physics, 2008, 104(11):114313.
[15] FAN Y Z, YANG H B, LIU X Z, et al. Preparation and study on radar absorbing materials of nickel-coated carbon fiber and flake graphite[J]. Journal of Alloys and Compounds, 2008,461(1/2):490-494.
[16] LI W W, LIU L, ZHONG C, et al. Effect of carbon fiber surface treatment on Cu electrodeposition:the electrochemical behavior and the morphology of Cu deposits[J]. Journal of Alloys and Compounds, 2011,509(8):3532-3536.
[17] GUO H, HUANG Y D, MENG L H, et al. Interface property of carbon fibers/epoxy resin composite improved by hydrogen peroxide in supercritical water[J]. Materials Letters,2009,63(17):1531-1534.
[18] 刘新, 王荣国, 刘文博,等. 异形截面碳纤维复合材料的吸波性能[J]. 复合材料学报, 2009, 26(2):94-100. LIU X, WANG R G, LIU W B, et al. Microwave absorbing properties of composites reinforced by irregular carbon fiber[J]. 2009, 26(2):94-100.
[19] 董星龙, 孙维民, 王维,等. 一种自动控制直流电弧金属纳米粉生产设备及方法:CN200410021190.1[P].2005-01-05. DONG X L, SUN W M, WANG W, et al. Equipment and method for producing metal nanometer power by automatic control DC electric arc:CN200410021190.1[P].2005-01-05.
[20] 王永辉. 树脂基纤维/铁纳米吸波复合材料的性能研究[D]. 大连:大连理工大学, 2014. WANG Y H. Properties of fibers/iron nanoparticles electromagnetic wave absorbing composites based on epoxy resin[D]. Dalian:Dalian University of Technology,2014.
[21] 赵红振, 齐暑华, 周文英,等. 透波复合材料树脂基体的研究进展[J]. 工程塑料应用, 2005, 33(12):65-67. ZHAO H Z, QI S H, ZHOU W Y, et al. Research progress on resin matrix for wave-transparent composites[J]. Engineering Plastics Application, 2005, 33(12):65-67.
[22] SHAH A, DING A, WANG Y H, et al. Enhanced microwave absorption by arrayed carbon fibers and gradient dispersion of Fe nanoparticles in epoxy resin composites[J]. Carbon, 2016, 96:987-997.
[23] POZAR D M. Microwave engineering[M]. New Jersey:John Wiley & Sons,Inc, 2012.
[24] 郭伟凯, 李家俊, 赵乃勤,等. 微量CFs平行排布吸波材料结构模型[J]. 兵器材料科学与工程, 2004, 27(4):36-39. GUO W K, LI J J, ZHAO N Q, et al. Model of microwave absorbing materials based on parallel-arranged carbon fiber[J]. Ordnance Material Science and Engineering, 2004, 27(4):36-39.
[25] 石梦诗. 铁纳米粒子/环氧树脂复合材料的制备及性能分析[D]. 大连:大连理工大学, 2012. SHI M S. The fabrication and properties of Fe/epoxy nanocomposites[D]. Dalian:Dalian University of Technology,2012.
[1] 张成林, 董抒华, 李丽君, 田龙雨, 谭洪生. E-玻纤/环氧树脂预浸料固化动力学及其动态热力学性能[J]. 材料工程, 2020, 48(9): 152-157.
[2] 包建文, 钟翔屿, 张代军, 彭公秋, 李伟东, 石峰晖, 李晔, 姚锋, 常海峰. 国产高强中模碳纤维及其增强高韧性树脂基复合材料研究进展[J]. 材料工程, 2020, 48(8): 33-48.
[3] 李为民, 彭超义, 杨金水, 邢素丽. PTFE/epoxy全有机超疏水涂层制备[J]. 材料工程, 2020, 48(7): 162-169.
[4] 李翰, 樊茂华, 王纳斯丹, 范保鑫, 冯振宇. 碳纤维环氧树脂复合材料热响应预报方法[J]. 材料工程, 2020, 48(5): 49-55.
[5] 康宸, 刘倓, 武帅, 赵雅娴, 徐樑华. PAN纤维热松弛行为控制与聚集态结构调控[J]. 材料工程, 2020, 48(4): 165-171.
[6] 侯桂香, 谢建强, 姚少巍, 张云杰, 蓝文. 生物基没食子酸环氧树脂/纳米氧化锌抗菌涂层的制备与性能[J]. 材料工程, 2020, 48(3): 34-39.
[7] 冯艳艳, 李彦杰, 杨文, 钟开应. 原位生长法制备花瓣状氢氧化钴及其电化学性能[J]. 材料工程, 2020, 48(3): 121-126.
[8] 齐业雄, 姜亚明, 李嘉禄. 混杂比对碳/芳纶纤维混杂纬编双轴向多层衬纱织物增强复合材料力学性能的影响[J]. 材料工程, 2020, 48(2): 71-78.
[9] 郑凌祺, 李刚, 杨小平, 李强, 石凌飞. 环糊精微球改性环氧树脂的制备及其碳纤维复合材料的X射线穿透性研究[J]. 材料工程, 2020, 48(11): 170-176.
[10] 李国丽, 彭公秋, 钟翔屿. 国产高性能碳纤维表征分析及复合材料力学性能研究[J]. 材料工程, 2020, 48(10): 74-81.
[11] 陈宇, 张代军, 李军, 温嘉轩, 陈祥宝. 石墨烯改性碳纤维树脂基复合材料的制备和性能评价[J]. 材料工程, 2020, 48(10): 82-87.
[12] 顾善群, 刘燕峰, 李军, 陈祥宝, 张代军, 邹齐, 肖锋. 碳纤维/环氧树脂复合材料高速冲击性能[J]. 材料工程, 2019, 47(8): 110-117.
[13] 张世杰, 王汝敏, 刘宁, 廖英强, 程勇. 纺丝工艺对T800碳纤维及其复合材料性能的影响[J]. 材料工程, 2019, 47(8): 118-124.
[14] 欧秋仁, 嵇培军, 肖军, 武玲, 王璐. 国产T800碳纤维用氰酸酯树脂开发及其复合材料性能[J]. 材料工程, 2019, 47(8): 125-131.
[15] 陈珂龙, 张桐, 崔溢, 王智勇. 超支化聚合物(HBPs)改性环氧树脂的研究进展[J]. 材料工程, 2019, 47(7): 11-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn