Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (11): 171-177    DOI: 10.11868/j.issn.1001-4381.2016.000866
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
TB6钛合金疲劳小裂纹扩展行为
许良1,2, 黄双君1, 回丽1,2, 王磊1,2, 周松1,2, 赵晴1
1. 沈阳航空航天大学 机电工程学院, 沈阳 110136;
2. 沈阳航空航天大学 航空制造工艺数字化国防重点学科实验室, 沈阳 110136
Small fatigue crack growth behavior of TB6 titanium alloy
XU Liang1,2, HUANG Shuang-jun1, HUI Li1,2, WANG Lei1,2, ZHOU Song1,2, ZHAO Qing1
1. School of Mechatronics Engineering, Shenyang Aerospace University, Shenyang 110136, China;
2. Key Laboratory of Fundamental Science for National Defense of Aeronautical Digital Manufacturing Process, Shenyang Aerospace University, Shenyang 110136, China
全文: PDF(4174 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 为了研究TB6钛合金自然萌生小裂纹的扩展行为,针对单边缺口拉伸试样开展室温下不同应力比(R=0.1,0.5)的小裂纹扩展实验,采用复型法观测了小裂纹的萌生与扩展情况。结果表明:同一应力比下,随着应力等级的降低,小裂纹的萌生寿命由占全寿命的60%增加到80%,但应力等级对TB6钛合金小裂纹扩展速率没有明显影响。裂纹早期扩展速率受微观组织的影响大,TB6钛合金扩展速率转变临界值是200μm,一旦裂纹长度达到200μm,裂纹扩展速率将不受取向不同的晶界或晶粒影响而迅速提升。TB6钛合金疲劳小裂纹起源于试样缺口根部,所有试样的裂纹大部分为角裂纹,疲劳小裂纹萌生寿命占全寿命的绝大部分。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
许良
黄双君
回丽
王磊
周松
赵晴
关键词 钛合金小裂纹疲劳源裂纹扩展速率应力等级    
Abstract:The growth behavior of naturally-initiated small cracks in single edge notched tensile (SENT) specimen of TB6 titanium alloy was studied. Fatigue experiments were conducted under constant amplitude loading with the stress ratios R of 0.1 and 0.5 at room temperature. Small cracks were allowed to be monitored by replica method during fatigue testing. Results show that at the same stress ratio, the initiation life of crack increases from 60% to 80% of the total fatigue life with the decrease of stress level. However, the stress level has no significant effect on the crack growth rate of TB6 titanium alloy. The crack growth rate at the early stage is greatly affected by the microstructure. Once the crack length reaches 200μm, the crack growth rate will increase rapidly regardless of grain boundary or grain orientation. Small cracks of TB6 titanium alloy are originated from the sample notch root in the form of corner crack, and the major part of total fatigue life is consumed in small fatigue crack initiation phase.
Key wordstitanium alloy    small crack    fatigue source    crack growth rate    stress level
收稿日期: 2016-07-18      出版日期: 2019-11-21
中图分类号:  TG146.2  
基金资助: 
通讯作者: 回丽(1965-),女,博士,教授,主要从事航空材料/结构的强度与疲劳研究,联系地址:辽宁省沈阳市沈北新区道义南大街37号沈阳航空航天大学机电工程学院(110136),E-mail:syhuil@126.com     E-mail: syhuil@126.com
引用本文:   
许良, 黄双君, 回丽, 王磊, 周松, 赵晴. TB6钛合金疲劳小裂纹扩展行为[J]. 材料工程, 2019, 47(11): 171-177.
XU Liang, HUANG Shuang-jun, HUI Li, WANG Lei, ZHOU Song, ZHAO Qing. Small fatigue crack growth behavior of TB6 titanium alloy. Journal of Materials Engineering, 2019, 47(11): 171-177.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000866      或      http://jme.biam.ac.cn/CN/Y2019/V47/I11/171
[1] MILLER K J. The behaviour of short fatigue cracks and their initiation Part II-a general summary[J]. Fatigue and Fracture of Engineering Materials and Structures, 1987, 10:93-113.
[2] NEWMAN J J, PHILIPS E P, SWAIN M H. Fatigue-life prediction methodology using small-crack theory[J]. International Journal of Fatigue, 1999, 21:109-119.
[3] LI W F, ZHANG X P. Investigation of initiation and growth behavior of short fatigue cracks emanating from a single edge notch specimen using in-situ SEM[J]. Materials Science and Engineering:A, 2001, 318:129-136.
[4] 陈勃,高玉魁,吴学仁,等. 喷丸强化7475-T7351铝合金的小裂纹行为和寿命预测[J]. 航空学报,2010,31(3):519-525. CHEN B, GAO Y K, WU X R, et al. Small crack behavior and fatigue life prediction for shot peening aluminum alloy 7475-T7351[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(3):519-525.
[5] 陈勃,吴学仁,刘建中. 基于小裂纹扩展的耐久性分析和经济寿命预测方法[J]. 机械强度,2004(增刊1):246-249. CHEN B, WU X R, LIU J Z. Durability analysis and economic life prediction using small crack theory[J]. Journal of Mechanical Strength, 2004(Suppl 1):246-249.
[6] 吴学仁,刘建中. 基于小裂纹理论的航空材料疲劳全寿命预测[J]. 航空学报,2006,27(2):219-226. WU X R, LIU J Z. Total fatigue life prediction for aeronautical materials by using small crack theory[J]. Acta Aeronautica et Astronautica Sinica, 2006,27(2):219-226.
[7] 童第华,吴学仁,刘建中,等. 基于小裂纹理论的铸造钛合金ZTC4疲劳寿命预测[J]. 材料工程,2015,43(6):60-65. TONG D H, WU X R, LIU J Z,et al. Fatigue life prediction of cast titanium alloy ZTC4 based on the small crack theory[J].Journal of Materials Engineering,2015,43(6):60-65.
[8] KUJAWSKI D. A new driving force parameter for crack growth in aluminum alloys[J]. International Journal of Fatigue, 2001, 23(8):733-740.
[9] KUJAWSKI D.A fatigue crack driving force parameter with load ratio effects[J]. International Journal of Fatigue,2001,23(1):239-246.
[10] DINDA S, KUJAWSKI D. Correlation and prediction of fatigue crack growth for different R-ratios using and parameters[J]. Engineering Fracture Mechanics, 2004, 71(12):1779-1790.
[11] 丁传富,刘建中,吴学仁. TC4钛合金和7475铝合金的长裂纹和小裂纹扩展特性的研究[J]. 航空材料学报,2005,25(6):11-17. DING C F, LIU J Z, WU X R. An investigation of small crack and long crack propagation behavior in titanium alloy TC4 and aluminum alloy 7475[J]. Journal of Aeronautical Materials,2005,25(6):11-17.
[12] CONNOLLEY T, REED P, STARINK M J. Short crack initiation and growth at 600℃ in notched specimens of Inconel 718[J]. Materials Science and Engineering:A, 2003,340(1/2):139-154.
[13] 张丽,吴学仁,黄新跃. GH4169合金自然萌生小裂纹扩展行为的试验研究[J]. 航空学报,2015, 36(3):840-847. ZHANG L, WU X R, HUANG X Y. Experimental investigation on the growth behavior of naturally initiated small cracks in superalloy GH4169[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(3):840-847.
[14] NISITANI H, GOTO M, KAWAGOISHI N. A small-crack growth law and its related phenomena[J]. Engineering Fracture Mechanics, 1992, 41(4):499-513.
[15] BLANKENSHIP C P, STARKE E A. The fatigue crack growth behavior of the Al-Cu-Li alloy weldalite 049[J]. Fatigue and Fracture of Engineering Materials and Structures,1991,14(1):103-114.
[16] DEMULSANT X, MENDES J. Microstructure effects on small fatigue crack initiation and growth in Ti6Al4V alloys[J]. Fatigue and Fracture of Engineering Materials and Structures,1995,18(12):1483-1497.
[1] 王欣, 许春玲, 李臻熙, 裴传虎, 汤智慧. 喷丸强度和表面覆盖率对TC4钛合金室温疲劳性能的影响[J]. 材料工程, 2020, 48(9): 138-143.
[2] 朱鸿昌, 罗军明, 朱知寿. TB17钛合金β相区动态再结晶行为及转变机理[J]. 材料工程, 2020, 48(2): 108-113.
[3] 钦兰云, 何晓娣, 李明东, 杨光, 高博文. 退火处理对激光沉积制造TC4钛合金组织及力学性能影响[J]. 材料工程, 2020, 48(2): 148-155.
[4] 元云岗, 康嘉杰, 岳文, 付志强, 朱丽娜, 佘丁顺, 王成彪. 不同温度下等离子渗氮后TC4钛合金的摩擦磨损性能[J]. 材料工程, 2020, 48(2): 156-162.
[5] 卢轶榕, 郑华勇, 陈秀华, 汪海. 三维机织复合材料/钛合金混杂板缝合连接剪切失效机理[J]. 材料工程, 2020, 48(11): 162-169.
[6] 李新星, 王红侠, 施剑峰, 韩伯群. TC11钛合金表面保护性摩擦氧化层的形成及作用[J]. 材料工程, 2020, 48(10): 141-147.
[7] 何代华, 朱威, 刘翔, 刘平. 硅酸钙及硅酸钠浓度对钛合金表面生物活性涂层的影响[J]. 材料工程, 2020, 48(10): 148-156.
[8] 李晓红, 张彦华, 李赞, 李菊, 张田仓. 热处理温度对TC17(α+β)/TC17(β)钛合金线性摩擦焊接头组织及力学性能的影响[J]. 材料工程, 2020, 48(1): 115-120.
[9] 陈航, 弭光宝, 李培杰, 王旭东, 黄旭, 曹春晓. 氧化石墨烯对600℃高温钛合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(9): 38-45.
[10] 刘石双, 仇平, 蔡建明, 李娟, 黄旭, 于辉, 刘利刚. Ti60钛合金室温保载疲劳性能及断裂行为[J]. 材料工程, 2019, 47(7): 112-120.
[11] 周强, 程军, 于振涛, 崔文芳. 一种新型近β型Ti-5.5Mo-6V-7Cr-4Al-2Sn-1Fe合金热变形行为[J]. 材料工程, 2019, 47(6): 121-128.
[12] 欧阳佩旋, 弭光宝, 李培杰, 何良菊, 曹京霞, 黄旭. NiCrAl/YSZ/NiCrAl-B.e复合涂层对α+β型高温钛合金燃烧产物的影响[J]. 材料工程, 2019, 47(5): 43-52.
[13] 杨慧慧, 杨晶晶, 喻寒琛, 王泽敏, 曾晓雁. 激光选区熔化成形TC4合金腐蚀行为[J]. 材料工程, 2018, 46(8): 127-133.
[14] 蔡建明, 田丰, 刘东, 李娟, 弭光宝, 叶俊青. 600℃高温钛合金双性能整体叶盘锻件制备技术研究进展[J]. 材料工程, 2018, 46(5): 36-43.
[15] 回丽, 刘思奇, 周松, 王磊, 马闯, 赵强. 载荷方向和焊缝余高对氩弧焊缝疲劳性能的影响[J]. 材料工程, 2018, 46(2): 122-127.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn