Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (1): 125-130    DOI: 10.11868/j.issn.1001-4381.2016.000882
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
电子束快速成形TC4合金的组织与断裂性能
童邵辉1,2, 李东2, 邓增辉2, 方虎2
1. 上海工程技术大学 工程实训中心, 上海 201620;
2. 上海工程技术大学 材料工程学院, 上海 201620
Microstructure and fracture property of electron beam rapidly manufactured TC4 alloy
TONG Shao-hui1,2, LI Dong2, DENG Zeng-hui2, FANG Hu2
1. The Engineering Training Center, Shanghai University of Engineering Science, Shanghai 201620, China;
2. School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
全文: PDF(18027 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 利用超景深显微镜和扫描电镜对电子束选区熔化快速成形的沉积态TC4试样组织与断口形貌进行观察和分析,研究不同几何成形和加载方向对断裂性能的影响。结果表明,断裂性能在垂直试样中受到柱状晶组织的影响,具有各向异性,在沉积方向上的断裂韧度为94.94MPa·m1/2,大于电子束扫描方向的断裂韧度85.33MPa·m1/2,而伸长率很小,仅为3%;α相形态对断裂性能有影响:水平试样片层状的α集束组织伸长率及断裂韧度优于垂直试样相互交错的针状α组织,最大值为14.5%和101.45MPa·m1/2,而抗拉强度和屈服强度较小;电子束选区熔化制备的TC4试样断口由许多不同尺寸的韧窝和弯曲的撕裂棱组成,断裂方式以延性韧窝状沿晶断裂为主,水平试样的断口撕裂棱曲折程度、韧窝尺寸和深度大于垂直试样。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
童邵辉
李东
邓增辉
方虎
关键词 电子束选区熔化断裂性能各向异性α相形态断口    
Abstract:Microstructure and fracture morphologies of as-deposited TC4 samples fabricated by rapid manufacture of electron beam selective melting (EBSM) were observed and analyzed by a digital microscope and a scanning electron microscope respectively. The influence of different build geometries and load directions on the fracture properties was studied. The results indicate that fracture properties of vertical samples are influenced by columnar crystals and characterized by its anisotropy. The fracture toughness (KIC) in the deposition direction of vertical samples is 94.94MPa·m1/2, which is greater than that in the electron beam scanning direction (85.33MPa·m1/2), and the elongation (δ) of 3% is very low; α morphology has some influence on the fracture properties. The elongation (δ) and fracture toughness (KIC) in horizontal samples with lamellar α colony are greater than that in vertical samples with crossed acicular α, and the maximum is 14.5% and 101.45MPa·m1/2, while the ultimate tensile strength (σb) and the yield strength (σ0.2) are lower; furthermore, the fracture of EBSM-TC4 samples consists of different sizes of dimples and circuitous tearing ridges. So the fracture method is characterized by ductile dimple-based intergranular fracture and the circuitous degree of tearing ridges as well as size and depth of dimples on the fracture morphologies of horizontal samples are greater than that in vertical samples.
Key wordselectron beam selective melting    fracture property    anisotropy    &alpha    phase morphology    fracture
收稿日期: 2016-07-19      出版日期: 2019-01-16
中图分类号:  TG146.2+3  
通讯作者: 李东(1974-),男,博士,副教授,研究方向:高能束(电子束和激光束)焊接和表面强化,联系地址:上海市松江区龙腾路333号行政楼(201620),E-mail:dlisues@qq.com     E-mail: dlisues@qq.com
引用本文:   
童邵辉, 李东, 邓增辉, 方虎. 电子束快速成形TC4合金的组织与断裂性能[J]. 材料工程, 2019, 47(1): 125-130.
TONG Shao-hui, LI Dong, DENG Zeng-hui, FANG Hu. Microstructure and fracture property of electron beam rapidly manufactured TC4 alloy. Journal of Materials Engineering, 2019, 47(1): 125-130.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000882      或      http://jme.biam.ac.cn/CN/Y2019/V47/I1/125
[1] FRAZIER W E. Metal additive manufacturing:a review[J]. Journal of Materials Engineering and Performance,2014, 23(6):1917-1928.
[2] MURR L E. Metallurgy of additive manufacturing:examples from electron beam melting[J]. Additive Manufacturing, 2015, 5:40-53.
[3] 巩水利,锁红波,李怀学. 金属增材制造技术在航空领域的发展与应用[J]. 航空制造技术, 2013(13):66-71. GONG S L,SUO H B,LI H X. Development and application of metal additive manufacturing technology[J]. Aeronautical Manufacturing Technology, 2013(13):66-71.
[4] 张学军,唐思熠,肇恒跃,等. 3D打印技术研究现状和关键技术[J]. 材料工程, 2016,44(2):122-128. ZHANG X J,TANG S Y,ZHAO H Y,et al. Research status and key technologies of 3D printing[J]. Journal of Materials Engineering,2016,44(2):122-128.
[5] JAMSHIDINIA M, WANG L,TONG W, et al. Fatigue properties of a dental implant produced by electron beam melting®(EBM)[J]. Journal of Materials Processing Technology, 2015, 226:255-263.
[6] GONG H,RAFI K,STARR T,et al. The effects of processing parameters on defect regularity in Ti-6Al-4V parts fabricated by selective laser melting and electron beam melting[C]//Proceedings of the 24th Solid Freeform Fabrication Symposium. Austin,US:University of Texas, 2013:424-439.
[7] GUO C, GE W J, LIN F. Effects of scanning parameters on material deposition during electron beam selective melting of Ti-6Al-4V powder[J]. Journal of Materials Processing Technology, 2015, 217:148-157.
[8] BAUEREIß A, SCHAROWSKY T, KÖRNER C. Defect generation and propagation mechanism during additive manufacturing by selective beam melting[J]. Journal of Materials Processing Technology, 2014, 214(11):2522-2528.
[9] WANG X Q,GONG X B,CHOU K. Scanning speed effect on mechanical properties of Ti-6Al-4V alloy processed by electron beam additive manufacturing[J]. Procedia Manufacturing,2015,1:287-295.
[10] 杨鑫,奚正平,刘咏,等. 电子束选区熔化技术对钛合金组织和力学性能的影响[J]. 稀有金属材料与工程, 2009, 38(7):1272-1275. YANG X, XI Z P, LIU Y, et al. Effect of electron beam selective melting on the microstructure and mechanical properties of Ti alloy[J]. Rare Metal Materials and Engineering, 2009, 38(7):1272-1275.
[11] HRABE N, QUINN T. Effects of processing on microstructure and mechanical properties of a titanium alloy (Ti-6Al-4V) fabricated using electron beam melting (EBM), part 1:distance from build plate and part size[J]. Materials Science and Engineering:A,2013,573:264-270.
[12] CAIN V, THIJS L, Van HUMBEECK J, et al. Crack propagation and fracture toughness of Ti6Al4V alloy produced by selective laser melting[J]. Additive Manufacturing,2015,5:68-76.
[13] 党薇,薛祥义,李金山,等. TC21合金片层组织特征对其断裂韧性的影响[J]. 中国有色金属学报, 2010, 20(增刊1):16-20. DANG W, XUE X Y, LI J S, et al. Influence of lamellar microstructure feature on fracture toughness of TC21 alloy[J]. The Chinese Journal of Nonferrous Metals,2010, 20(Suppl 1):16-20.
[14] 周永峰,胡树兵,肖建中,等. TC4钛合金板材电子束焊接疲劳性能[J]. 材料科学与工程学报, 2010, 28(1):130-135. ZHOU Y F,HU S B,XIAO J Z,et al. Fatigue properties of electron beam welded joints of TC4 titanium alloy sheets[J]. Journal of Materials Science & Engineering, 2010, 28(1):130-135.
[15] 彭小娜,郭鸿镇,石志峰,等. 近等温变形量对TC4-DT钛合金组织参数和拉伸性能的影响[J]. 航空材料学报, 2013, 33(3):18-24. PENG X N, GUO H Z, SHI Z F, et al. Effects of near-isothermal deformation amounts on microstructure parameters and tensile properties of TC4-DT titanium alloy[J]. Journal of Aeronautical Materials, 2013, 33(3):18-24.
[1] 段晓鸽, 江海涛, 米振莉, 王丽丽, 李萧. 轧制方式对6016铝合金薄板组织和塑性各向异性的影响[J]. 材料工程, 2020, 48(8): 134-141.
[2] 吴红亚, 杨云, 张光磊, 白洋, 周济. 双曲超材料及其传感器研究进展[J]. 材料工程, 2020, 48(6): 34-42.
[3] 王欣, 陈星, 胡仁高, 胡博, 许春玲, 汤智慧, 古远兴. 冷挤压GH4169合金孔结构疲劳性能与断口分析[J]. 材料工程, 2020, 48(6): 156-162.
[4] 赵泽军, 卢学鹏, 刘帅, 息剑峰, 李宝河. MgO/Pd底层对CoSiB/Pd多层膜垂直磁各向异性及热稳定性的影响[J]. 材料工程, 2020, 48(2): 65-70.
[5] 熊伟腾, 王云英, 范金娟, 肖淑华. 非定向有机玻璃拉伸断口形貌与拉伸温度相关性分析[J]. 材料工程, 2020, 48(10): 96-104.
[6] 丰涵, 王宝顺, 吴晓涵, 王曼, 佴启亮, 宋志刚. 022Cr25Ni7Mo4N双相不锈钢等温处理中的组织演变[J]. 材料工程, 2020, 48(1): 70-76.
[7] 罗忠兵, 张嘉宁, 金士杰, 林莉. 定向凝固镍基合金DZ444声学特性的各向异性[J]. 材料工程, 2019, 47(4): 120-126.
[8] 丁智平, 黄达勇, 荣继刚, 黄友剑, 曾家兴. 长玻纤增强复合材料注塑成型构件强度分析[J]. 材料工程, 2018, 46(4): 111-119.
[9] 何柏林, 江明明, 于影霞, 李力. 超声冲击处理MB8镁合金十字接头的表层组织及疲劳性能[J]. 材料工程, 2018, 46(10): 70-76.
[10] 闫晓玲, 曹勇, 董世运. 激光熔覆再制造涂层应力超声无损评价[J]. 材料工程, 2018, 46(10): 96-103.
[11] 张显峰, 陆政, 高文理, 曹亚雷, 冯朝辉. 2A66铝锂合金板材各向异性研究[J]. 材料工程, 2017, 45(7): 7-12.
[12] 孙大智, 薛克敏, 董力源, 李萍. 扭转圈数对高压扭转SiCP/Al复合材料界面扩散行为和组织性能的影响[J]. 材料工程, 2017, 45(7): 13-18.
[13] 荆洪阳, 唐梦茹, 赵雷, 徐连勇. P92钢蠕变-疲劳交互作用下的裂纹扩展行为[J]. 材料工程, 2017, 45(5): 112-117.
[14] 田文扬, 刘奋, 韦春华, 夏卫生, 杨云珍. DP980高强钢动态拉伸力学行为[J]. 材料工程, 2017, 45(3): 47-53.
[15] 张晓雯, 吴南, 张旋, 马丽婷, 厉蕾. 透明聚碳酸酯材料疲劳断裂行为[J]. 材料工程, 2017, 45(11): 30-35.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn