1 Research Center of Nanoscience and Nanotechnology, Shanghai University, Shanghai 200444, China 2 SMIT Center, School of Mechanical Engineering and Automation, Shanghai University, Shanghai 200444, China
The thermal insulating properties of polymer greatly restrict the application of polymer as the thermal conductivity materials in industry. Multilayer graphene was chosen as a filler due to its unique thermal transfer property. The effect of alumina oxide (Al2O3) and silicon carbide (SiC) with graphene as hybrid fillers on thermal conductivity of polymers was also explored. The thermal conductivity of the composites enhances 161% with 3%(mass fraction) graphene content compared to pure nylon-6(PA6). The thermal conductivity of PA6 composites is within 0.653-4.307W·m-1·K-1 by adjusting hybrid fillers content and the ratio of graphene with Al2O3 and SiC. The best thermal conductivity is 20 times higher than the pure PA6. It is no doubt that the exploration can provide valuable experimental basis for extending the utilization of graphene as thermal conductivity filler and the application of PA6 thermal conductivity materials in industry.
MONTEVERDE F , SCATTEIA L . Resistance to thermal shock and to oxidation of metal diborides-SiC ceramics for aerospace application[J]. Journal of the American Ceramic Society, 2007, 90 (4): 1130- 1138.
doi: 10.1111/jace.2007.90.issue-4
2
BALANDIN A A . Thermal properties of graphene and nanostructured carbon materials[J]. Nature Materials, 2011, 10 (8): 569- 581.
doi: 10.1038/nmat3064
3
YAN Z , LIU G , KHAN J M , et al. Graphene quilts for thermal management of high-power GaN transistors[J]. Nature Communications, 2012, 3, 827- 834.
doi: 10.1038/ncomms1828
4
DROVAL G , FELLER J F , SALAGNAC P , et al. Rheological properties of conductive polymer composite (CPC) filled with double percolated network of carbon nanoparticles and boron nitride powder[J]. E-Polymers, 2013, 9 (1): 261- 277.
5
BURGER N , LAACHACHI A , MORTAZAVI B , et al. Alignments and network of graphite fillers to improve thermal conductivity of epoxy-based composites[J]. International Journal of Heat and Mass Transfer, 2015, 89, 505- 513.
doi: 10.1016/j.ijheatmasstransfer.2015.05.065
ZHOU W Y , QI S H , TU C C , et al. Thermally conductive silicone rubber composites[J]. Journal of Aeronautical Materials, 2007, 27 (1): 33- 36.
7
HWANG Y , KIM J , CHO W . Thermal conductivity of thermally conductive ceramic composites and silicon carbide/epoxy composites through wetting process[J]. Polymer-Korea, 2014, 38 (6): 782- 786.
doi: 10.7317/pk.2014.38.6.782
8
KONG Q Q , LIU Z , GAO J G , et al. Hierarchical graphene-carbon fiber composite paper as a flexible lateral heat spreader[J]. Advanced Functional Materials, 2014, 24 (27): 4222- 4228.
doi: 10.1002/adfm.v24.27
9
BIERCUK M , LLAGUNO M C , RADOSAVLJEVIC M , et al. Carbon nanotube composites for thermal management[J]. Applied Physics Letters, 2002, 80 (15): 2767- 2769.
doi: 10.1063/1.1469696
10
SHI J N , GER M D , LIU Y M , et al. Improving the thermal conductivity and shape-stabilization of phase change materials using nanographite additives[J]. Carbon, 2013, 51, 365- 372.
doi: 10.1016/j.carbon.2012.08.068
11
SHTEIN M , NADIV R , BUZAGLO M , et al. Thermally conductive graphene-polymer composites:size, percolation, and synergy effects[J]. Chemistry of Materials, 2015, 27 (6): 2100- 2106.
doi: 10.1021/cm504550e
LI N , MA Z K , CHEN M , et al. Structures and performance of graphene/polyimide composite graphite fibers[J]. Journal of Materials Engineering, 2017, 45 (9): 31- 37.
doi: 10.11868/j.issn.1001-4381.2016.000251
13
PARK W , HU J , JAUREGUI L A , et al. Electrical and thermal conductivities of reduced graphene oxide/polystyrene composites[J]. Applied Physics Letters, 2014, 104 (11): 113101.
doi: 10.1063/1.4869026
WANG W , DING H L , ZHANG Z K , et al. Preparation and properties of graphene nanoplatelets/PP thermal conductive composites[J]. Acta Materiae Compositae Sinica, 2013, 30 (6): 14- 20.
15
HAUSER R A , KEITH J M , KING J A , et al. Thermal conductivity models for single and multiple filler carbon/liquid crystal polymer composites[J]. Journal of Applied Polymer Science, 2008, 110 (5): 2914- 2923.
doi: 10.1002/app.v110:5
16
MA A J , LI H C , CHEN W X , et al. Improved thermal conductivity of silicon carbide/carbon fiber/epoxy resin composites[J]. Polymer-Plastics Technology and Engineering, 2013, 52 (3): 295- 299.
17
DING P , SU S , SONG N , et al. Highly thermal conductive composites with polyamide-6 covalently-grafted graphene by an in situ polymerization and thermal reduction process[J]. Carbon, 2014, 66, 576- 584.
doi: 10.1016/j.carbon.2013.09.041
18
DING P , ZHUANG N , CUI X , et al. Enhanced thermal conductive property of polyamide composites by low mass fraction of covalently grafted graphene nanoribbons[J]. Journal of Materials Chemistry C, 2015, 3 (42): 10990- 10997.
doi: 10.1039/C5TC02292D
19
CUI X , DING P , ZHUANG N , et al. Thermal conductive and mechanical properties of polymeric composites based on solution-exfoliated boron nitride and graphene nanosheets:a morphology-promoted synergistic effect[J]. ACS Applied Materials & Interfaces, 2015, 7 (34): 19068- 19075.
20
SONG N , YANG J , DING P , et al. Effect of polymer modifier chain length on thermal conductive property of polyamide 6/graphene nanocomposites[J]. Composites Part A, 2015, 73, 232- 241.
doi: 10.1016/j.compositesa.2015.03.018
21
SONG N , JIAO D , DING P , et al. Anisotropic thermally conductive flexible films based on nanofibrillated cellulose and aligned graphene nanosheets[J]. Journal of Materials Chemistry C, 2016, 4 (2): 305- 314.
doi: 10.1039/C5TC02194D
22
SEVOSTIANOV I , KACHANOV M . Connection between elastic moduli and thermal conductivities of anisotropic short fiber reinforced thermoplastics:theory and experimental verification[J]. Materials Science and Engineering:A, 2003, 360 (1/2): 339- 344.
23
FERRARI A C , BASKO D M . Raman spectroscopy as a versatile tool for studying the properties of graphene[J]. Nature Nanotechnology, 2013, 8 (4): 235- 246.
doi: 10.1038/nnano.2013.46
24
SONG N , YANG J , DING P , et al. Effect of covalent-functionalized graphene oxide with polymer and reactive compatibilization on thermal properties of maleic anhydride grafted polypropylene[J]. Industrial & Engineering Chemistry Research, 2014, 53 (51): 19951- 19960.