Please wait a minute...
 
2222材料工程  2018, Vol. 46 Issue (3): 28-33    DOI: 10.11868/j.issn.1001-4381.2016.000904
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
不同填料复配对尼龙6/石墨烯复合材料导热性能的影响
宋娜1,*(), 崔思奇1, 焦德金1, 侯兴双1, 刘建影2, 丁鹏1,*(), 施利毅1
1 上海大学 纳米材料与科技研究中心, 上海 200444
2 上海大学 机电工程与自动化学院中瑞系统集成技术中心, 上海 200444
Influence of Hybrid Fillers on Thermal Conductivity of Nylon-6/Graphene Composites
Na SONG1,*(), Si-qi CUI1, De-jin JIAO1, Xing-shuang HOU1, Jian-ying LIU2, Peng DING1,*(), Li-yi SHI1
1 Research Center of Nanoscience and Nanotechnology, Shanghai University, Shanghai 200444, China
2 SMIT Center, School of Mechanical Engineering and Automation, Shanghai University, Shanghai 200444, China
全文: PDF(2660 KB)   HTML ( 47 )  
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 

高分子材料的绝热特性极大地限制了其作为导热材料在工业中的应用。选用多层石墨烯作为导热填料,并分别与导热填料氧化铝(Al2O3)和碳化硅(SiC)复配,探究导热填料的复配对尼龙6(PA6)复合材料导热性能的影响。加入质量分数为3%石墨烯时,PA6复合材料的热导率为0.548W·m-1·K-1,相比PA6基体提高161%。通过调节石墨烯与Al2O3和SiC复配的比例以及复合填料量,PA6复合材料的热导率可控在0.653~4.307W·m-1·K-1之间,最高是PA6基体的20倍。为拓展石墨烯在导热材料方面的应用及PA6导热材料在工业上应用提供了有价值的实验依据。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋娜
崔思奇
焦德金
侯兴双
刘建影
丁鹏
施利毅
关键词 尼龙6石墨烯两步法填料复配导热性能    
Abstract

The thermal insulating properties of polymer greatly restrict the application of polymer as the thermal conductivity materials in industry. Multilayer graphene was chosen as a filler due to its unique thermal transfer property. The effect of alumina oxide (Al2O3) and silicon carbide (SiC) with graphene as hybrid fillers on thermal conductivity of polymers was also explored. The thermal conductivity of the composites enhances 161% with 3%(mass fraction) graphene content compared to pure nylon-6(PA6). The thermal conductivity of PA6 composites is within 0.653-4.307W·m-1·K-1 by adjusting hybrid fillers content and the ratio of graphene with Al2O3 and SiC. The best thermal conductivity is 20 times higher than the pure PA6. It is no doubt that the exploration can provide valuable experimental basis for extending the utilization of graphene as thermal conductivity filler and the application of PA6 thermal conductivity materials in industry.

Key wordsnylon-6    graphene    two-step method    hybrid filler    thermal conductivity
收稿日期: 2016-07-22      出版日期: 2018-03-20
中图分类号:  TQ327.8  
基金资助:中国石油科技创新基金研究项目(2016D-5007-0508)
通讯作者: 宋娜,丁鹏     E-mail: snlxf@shu.edu.cn;dingpeng@shu.edu.cn
作者简介: 丁鹏(1981-), 男, 研究员, 博士, 研究方向为多功能复合材料, 联系地址:上海市宝山区上大路99号纳米科学与技术研究中心(200444), E-mail:dingpeng@shu.edu.cn
宋娜(1981-), 女, 讲师, 博士, 研究方向为导热高分子材料, 联系地址:上海市宝山区上大路99号纳米科学与技术研究中心(200444), E-mail:snlxf@shu.edu.cn
引用本文:   
宋娜, 崔思奇, 焦德金, 侯兴双, 刘建影, 丁鹏, 施利毅. 不同填料复配对尼龙6/石墨烯复合材料导热性能的影响[J]. 材料工程, 2018, 46(3): 28-33.
Na SONG, Si-qi CUI, De-jin JIAO, Xing-shuang HOU, Jian-ying LIU, Peng DING, Li-yi SHI. Influence of Hybrid Fillers on Thermal Conductivity of Nylon-6/Graphene Composites. Journal of Materials Engineering, 2018, 46(3): 28-33.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000904      或      http://jme.biam.ac.cn/CN/Y2018/V46/I3/28
Fig.1  石墨烯的表征
(a) SEM图像;(b)TEM图像;(c)粒径分布;(d)拉曼谱图;(e)红外谱图
Fig.2  石墨烯含量对PA6/石墨烯复合材料导热系数的影响
Fig.3  PA6/graphene(a), PA6/graphene/Al2O3 (b)和PA6/graphene/SiC(c)复合材料断面的扫描电镜照片
Fig.4  复合填料配比(a, b)及添加量(c, d)对PA6/石墨烯复合材料导热系数的影响
Fig.5  PA6/石墨烯复合材料(a)和PA6/石墨烯/碳化硅复合材料(b)导热通路示意图
1 MONTEVERDE F , SCATTEIA L . Resistance to thermal shock and to oxidation of metal diborides-SiC ceramics for aerospace application[J]. Journal of the American Ceramic Society, 2007, 90 (4): 1130- 1138.
doi: 10.1111/jace.2007.90.issue-4
2 BALANDIN A A . Thermal properties of graphene and nanostructured carbon materials[J]. Nature Materials, 2011, 10 (8): 569- 581.
doi: 10.1038/nmat3064
3 YAN Z , LIU G , KHAN J M , et al. Graphene quilts for thermal management of high-power GaN transistors[J]. Nature Communications, 2012, 3, 827- 834.
doi: 10.1038/ncomms1828
4 DROVAL G , FELLER J F , SALAGNAC P , et al. Rheological properties of conductive polymer composite (CPC) filled with double percolated network of carbon nanoparticles and boron nitride powder[J]. E-Polymers, 2013, 9 (1): 261- 277.
5 BURGER N , LAACHACHI A , MORTAZAVI B , et al. Alignments and network of graphite fillers to improve thermal conductivity of epoxy-based composites[J]. International Journal of Heat and Mass Transfer, 2015, 89, 505- 513.
doi: 10.1016/j.ijheatmasstransfer.2015.05.065
6 周文英, 齐暑华, 涂春潮, 等. 导热硅橡胶复合材料研究[J]. 航空材料学报, 2007, 27 (1): 33- 36.
6 ZHOU W Y , QI S H , TU C C , et al. Thermally conductive silicone rubber composites[J]. Journal of Aeronautical Materials, 2007, 27 (1): 33- 36.
7 HWANG Y , KIM J , CHO W . Thermal conductivity of thermally conductive ceramic composites and silicon carbide/epoxy composites through wetting process[J]. Polymer-Korea, 2014, 38 (6): 782- 786.
doi: 10.7317/pk.2014.38.6.782
8 KONG Q Q , LIU Z , GAO J G , et al. Hierarchical graphene-carbon fiber composite paper as a flexible lateral heat spreader[J]. Advanced Functional Materials, 2014, 24 (27): 4222- 4228.
doi: 10.1002/adfm.v24.27
9 BIERCUK M , LLAGUNO M C , RADOSAVLJEVIC M , et al. Carbon nanotube composites for thermal management[J]. Applied Physics Letters, 2002, 80 (15): 2767- 2769.
doi: 10.1063/1.1469696
10 SHI J N , GER M D , LIU Y M , et al. Improving the thermal conductivity and shape-stabilization of phase change materials using nanographite additives[J]. Carbon, 2013, 51, 365- 372.
doi: 10.1016/j.carbon.2012.08.068
11 SHTEIN M , NADIV R , BUZAGLO M , et al. Thermally conductive graphene-polymer composites:size, percolation, and synergy effects[J]. Chemistry of Materials, 2015, 27 (6): 2100- 2106.
doi: 10.1021/cm504550e
12 李娜, 马兆昆, 陈铭, 等. 石墨烯/聚酰亚胺复合石墨纤维的结构与性能[J]. 材料工程, 2017, 45 (9): 31- 37.
doi: 10.11868/j.issn.1001-4381.2016.000251
12 LI N , MA Z K , CHEN M , et al. Structures and performance of graphene/polyimide composite graphite fibers[J]. Journal of Materials Engineering, 2017, 45 (9): 31- 37.
doi: 10.11868/j.issn.1001-4381.2016.000251
13 PARK W , HU J , JAUREGUI L A , et al. Electrical and thermal conductivities of reduced graphene oxide/polystyrene composites[J]. Applied Physics Letters, 2014, 104 (11): 113101.
doi: 10.1063/1.4869026
14 汪文, 丁宏亮, 张子宽, 等. 石墨烯微片/聚丙烯导热复合材料的制备与性能[J]. 复合材料学报, 2013, 30 (6): 14- 20.
14 WANG W , DING H L , ZHANG Z K , et al. Preparation and properties of graphene nanoplatelets/PP thermal conductive composites[J]. Acta Materiae Compositae Sinica, 2013, 30 (6): 14- 20.
15 HAUSER R A , KEITH J M , KING J A , et al. Thermal conductivity models for single and multiple filler carbon/liquid crystal polymer composites[J]. Journal of Applied Polymer Science, 2008, 110 (5): 2914- 2923.
doi: 10.1002/app.v110:5
16 MA A J , LI H C , CHEN W X , et al. Improved thermal conductivity of silicon carbide/carbon fiber/epoxy resin composites[J]. Polymer-Plastics Technology and Engineering, 2013, 52 (3): 295- 299.
17 DING P , SU S , SONG N , et al. Highly thermal conductive composites with polyamide-6 covalently-grafted graphene by an in situ polymerization and thermal reduction process[J]. Carbon, 2014, 66, 576- 584.
doi: 10.1016/j.carbon.2013.09.041
18 DING P , ZHUANG N , CUI X , et al. Enhanced thermal conductive property of polyamide composites by low mass fraction of covalently grafted graphene nanoribbons[J]. Journal of Materials Chemistry C, 2015, 3 (42): 10990- 10997.
doi: 10.1039/C5TC02292D
19 CUI X , DING P , ZHUANG N , et al. Thermal conductive and mechanical properties of polymeric composites based on solution-exfoliated boron nitride and graphene nanosheets:a morphology-promoted synergistic effect[J]. ACS Applied Materials & Interfaces, 2015, 7 (34): 19068- 19075.
20 SONG N , YANG J , DING P , et al. Effect of polymer modifier chain length on thermal conductive property of polyamide 6/graphene nanocomposites[J]. Composites Part A, 2015, 73, 232- 241.
doi: 10.1016/j.compositesa.2015.03.018
21 SONG N , JIAO D , DING P , et al. Anisotropic thermally conductive flexible films based on nanofibrillated cellulose and aligned graphene nanosheets[J]. Journal of Materials Chemistry C, 2016, 4 (2): 305- 314.
doi: 10.1039/C5TC02194D
22 SEVOSTIANOV I , KACHANOV M . Connection between elastic moduli and thermal conductivities of anisotropic short fiber reinforced thermoplastics:theory and experimental verification[J]. Materials Science and Engineering:A, 2003, 360 (1/2): 339- 344.
23 FERRARI A C , BASKO D M . Raman spectroscopy as a versatile tool for studying the properties of graphene[J]. Nature Nanotechnology, 2013, 8 (4): 235- 246.
doi: 10.1038/nnano.2013.46
24 SONG N , YANG J , DING P , et al. Effect of covalent-functionalized graphene oxide with polymer and reactive compatibilization on thermal properties of maleic anhydride grafted polypropylene[J]. Industrial & Engineering Chemistry Research, 2014, 53 (51): 19951- 19960.
[1] 张林琳, 顾学林, 向笑笑, 刘会娥, 陈爽. 石墨烯-羧甲基纤维素复合气凝胶的制备及吸油性能评价[J]. 材料工程, 2022, 50(9): 43-51.
[2] 李守佳, 罗春燕, 陈卫星, 方铭港, 孙健鑫. 氧化石墨烯接枝聚乙二醇对左旋聚乳酸结晶行为和热稳定性的影响[J]. 材料工程, 2022, 50(8): 99-106.
[3] 周银, 乔畅, 邹家栋, 郭洪锍, 王树奇. 多层石墨烯对钛合金摩擦学性能的影响[J]. 材料工程, 2022, 50(8): 107-114.
[4] 张铭泰, 余少彬, 李希成, 冯萃敏, 石梦童, 汪长征, 王强. 新型复合纳米材料用于光催化降解染料废水的研究进展[J]. 材料工程, 2022, 50(7): 59-68.
[5] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[6] 吴乾鑫, 刘磊, 孙晋蒙, 李一帆, 刘宇航, 杜洪方, 艾伟, 杜祝祝, 王科. 磺酸基修饰石墨烯复合材料的储钠性能研究[J]. 材料工程, 2022, 50(4): 36-43.
[7] 杜宗波, 时双强, 陈宇滨, 褚海荣, 杨程. 介电型石墨烯吸波复合材料研究进展[J]. 材料工程, 2022, 50(4): 74-84.
[8] 侯小鹏, 曾浩, 杜邵文, 李娜, 朱怡雯, 傅小珂, 李秀涛. 基于工业化碳材料的锂氟化碳电池正极材料制备及性能[J]. 材料工程, 2022, 50(3): 107-114.
[9] 阚侃, 王珏, 付东, 郑明明, 张晓臣. 氮掺杂碳纤维包覆石墨烯纳米片的构建及电容特性[J]. 材料工程, 2022, 50(2): 94-102.
[10] 王牧, 曾夏茂, 苗霞, 魏浩光, 周仕明, 冯岸超. 三维石墨烯-吡咯气凝胶/环氧树脂复合材料的制备及其性能[J]. 材料工程, 2022, 50(1): 117-124.
[11] 刘龙, 梁森, 王得盼, 周越松, 郑长升. 硅烷偶联剂及氧化石墨烯二次改性对芳纶纤维界面性能的影响[J]. 材料工程, 2022, 50(1): 145-153.
[12] 李金磊, 邓凌峰, 张淑娴, 谭洁慧, 覃榕荣, 王壮. 化学镀制备纳米银-石墨烯复合材料及其电化学性能[J]. 材料工程, 2021, 49(8): 127-138.
[13] 易著武, 刘跃军, 刘小超, 杨坚, 李祥刚, 范淑红. 乙烯-乙烯醇共聚物/尼龙6复合材料的加工流变性能[J]. 材料工程, 2021, 49(8): 145-152.
[14] 李颖, 雷蕊, 徐文凯, 朱小雪, 黄艳凤. 磁性氧化石墨烯基17β-雌二醇分子印迹复合膜的制备与性能[J]. 材料工程, 2021, 49(6): 170-177.
[15] 陈宇, 张代军, 李军, 温嘉轩, 陈祥宝. 三维结构石墨烯气凝胶/环氧树脂复合材料的制备和电磁屏蔽性能[J]. 材料工程, 2021, 49(5): 82-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn