Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (10): 47-54    DOI: 10.11868/j.issn.1001-4381.2016.000907
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
粉末冶金Ti-14Mo-2.1Ta-0.9Nb-7Zr合金热变形行为
马琳, 李伟, 白娇娇, 赵丰停
贵州大学 材料与冶金学院, 贵阳 550025
Hot Deformation Behavior of Powder Metallurgy Ti-14Mo-2.1Ta-0.9Nb-7Zr Alloy
MA Lin, LI Wei, BAI Jiao-jiao, ZHAO Feng-ting
College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
全文: PDF(4732 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 在Gleeble-1500D热模拟机上对粉末冶金制备的新型医用Ti-14Mo-2.1Ta-0.9Nb-7Zr合金进行等温热压缩实验,研究该合金在温度为780~960℃,应变速率为0.001~1s-1,变形为60%的条件下的高温变形及动态再结晶行为。采用包含变形激活能Q和温度T的双曲正弦形式修正的Arrhenius关系来描述该合金高温压缩变形时的最大变形抗力方程;并引入参数αε),nε),Qε)和Aε)得到包含σεTε的本构方程。结果表明:由本构方程计算得到的应力值和实验值有较好相关性(R=0.99430),平均相对误差为5.327%;最后采用加工硬化率法通过对θ-σ和lnθ-ε曲线进行三次多项式拟求解拐点的方法,得到了不同变形条件下发生动态再结晶的临界应力和临界应变值,建立了临界应力和Z参数的关系,获得动态再结晶的临界应力方程,而临界应变εc主要集中在0.01~0.04,不同变形条件下该合金发生动态再结晶的临界应变变化极小。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马琳
李伟
白娇娇
赵丰停
关键词 粉末冶金Ti-14Mo-2.1Ta-0.9Nb-7Zr合金热压缩本构方程动态再结晶    
Abstract:The new medical Ti-14Mo-2.1Ta-0.9Nb-7Zr alloy was prepared by powder metallurgy. The high temperature compression behavior and the dynamic recrystallization behavior of the alloy were investigated by hot compression tests. The tests were performed with a Gleeble-1500D simulator at 780-960℃ and stain rate of 0.001-1s-1 up to a deformation of 60%.The hyperbolic sine modified Arrhenius model, which included deformation activation energy Q and temperature T, was used to describe the hot compression deformation equation of maximum deformation resistance; and the material parameter function of α(ε), n(ε), Q(ε) and A(ε), was introduced to obtain the constitutive equations. The results show that the flow stress values predicted by the proposed model have a good agreement with experimental results, high value of correlation coefficient (R=0.99430) and low value of average absolute relative error (5.327%); the critical stress and critical stain for dynamic recrystallization (DRX) under different deformation conditions are accurately calculated based on the method of work hardening rate and the inflection points, which are determined by fitting a third order polynomial to the θ-σ and lnθ-ε curves. Then the mathematical models of critical stress versus Z parameter and the critical stress equations of dynamic recrystallization are deduced, the critical strain εc mainly concentrates in the 0.01-0.04 and the critical strains of dynamic recrystallization alloy under different deformation conditions change in tiny.
Key wordspowder metallurgy    Ti-14Mo-2.1Ta-0.9Nb-7Zr alloy    hot compression    constitutive equation    dynamic recrystallization
收稿日期: 2016-07-27      出版日期: 2018-10-17
中图分类号:  TG146.2+3  
通讯作者: 李伟(1980-),男,博士,副教授,研究方向:生物基金属材料,联系地址:贵州省贵阳市花溪区贵州大学西校区材料与冶金学院(550025),E-mail:liweiem@163.com     E-mail: liweiem@163.com
引用本文:   
马琳, 李伟, 白娇娇, 赵丰停. 粉末冶金Ti-14Mo-2.1Ta-0.9Nb-7Zr合金热变形行为[J]. 材料工程, 2018, 46(10): 47-54.
MA Lin, LI Wei, BAI Jiao-jiao, ZHAO Feng-ting. Hot Deformation Behavior of Powder Metallurgy Ti-14Mo-2.1Ta-0.9Nb-7Zr Alloy. Journal of Materials Engineering, 2018, 46(10): 47-54.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000907      或      http://jme.biam.ac.cn/CN/Y2018/V46/I10/47
[1] SAHAGUCHI N, MITSUO N, AKAHORI T,et al.Effects of alloying elements on elastic modulus of Ti-Nb-Ta-Zr system alloy for biomedical applications[J].Materials Science Forum, 2004,449/452:1269-1272.
[2] 胡海波,刘会群,王杰恩,等. 生物医用多孔钛及钛合金的研究进展[J]. 材料导报,2012,26(增刊1):262-266. HU H B,LIU H Q,WANG J E,et al.Research progress of biomedical porous titanium and its alloys[J]. Materials Review,2012, 26(Suppl 1):262-266.
[3] 梁丹丹,王德志,王小鹰,等. 医用Ti-Mo合金的制备及性能分析[J]. 稀有金属材料与工程,2013,42(12):2607-2612. LIANG D D,WANG D Z,WANG X Y,et al. Preparation and characteristics of the medical Ti-Mo alloys[J]. Rare Metal Materials and Engineering,2013,42(12):2607-2612.
[4] 金哲,张万明. 生物医用Ti-6Al-7Nb合金高温变形行为研究[J]. 稀有金属,2012,36(2):218-223. JIN Z,ZHANG W M. High temperature deformation behaviors of biomedical titanium alloy Ti-6Al-7Nb[J]. Chinese Journal of Rare Metals, 2012,36(2):218-223.
[5] RACK H J, QAZI J I. Titanium alloys for biomedical applications[J]. Materials Science and Engineering:C, 2006, 26(8):1269-1277.
[6] GEETHA M, SINGH A K, ASOKAMANI R, et al. Ti based biomaterials, the ultimate choice for orthopaedic implants-a review[J]. Progress in Materials Science, 2009, 54(1):397-425.
[7] JIANG H T,ZENG S W,ZHAO A M, et al. Hot deformation behavior of β phase containing γ-TiAl alloy[J]. Materials Science and Engineering:A,2016,661:160-167.
[8] CHEN H S, LIU X H, LIU G F, et al.Hot deformation behavior and processing map of Ti-6Al-3Nb-2Zr-1Mo titanium alloy[J].Rare Metal Materials and Engineering, 2016, 45(4):901-906.
[9] 王国,惠松骁,叶文君,等. Ti-3.0Al-3.7Cr-2.0Fe低成本钛合金的热压缩变形行为[J]. 中国有色金属学报,2012,22(8):2223-2229. WANG G,HUI S X,YE W J,et al. Hot compressive behavior of Ti-3.0Al-3.7Cr-2.0Fe low cost titanium alloy[J].The Chinese Journal of Nonferrous Metals, 2012,22(8):2223-2229.
[10] 王琪,钱锋,易丹青,等. 粉末冶金TA15钛合金高温塑性变形加工图[J]. 稀有金属材料与工程,2013,42(9):1854-1858. WANG Q,QIAN F,YI D Q,et al. Processing map of powder metallurgy TA15 titanium alloy for high temperature plastic deformation[J]. Rare Metal Materials and Engineering, 2013,42(9):1854-1858.
[11] SAKAI T, JONAS J J. Dynamic recrystallization:mechanical and microstructural considerations[J]. Acta Metallurgica, 1984, 32(2):189-209.
[12] 任军帅. 粉末冶金Ti-47Al-2Nb-2Cr合金高温变形行为及组织演变规律研究[D]. 哈尔滨:哈尔滨工业大学, 2014. REN J S. Hot deformation behavior and microstructure evolution law of PM Ti-47Al-2Nb-2Cr alloy[D]. Harbin:Harbin Institute of Technology,2014.
[13] 刘丽娟,吕明,武文革. 钛合金Ti-6Al-4V热变形中的动态再结晶研究[J]. 热加工工艺,2014,43(24):1-6. LIU L J,LYU M,WU W G. Dynamic recrystallization of Ti-6Al-4V during hot deformation[J]. Hot Working Technology,2014,43(24):1-6.
[14] 郭爱红,余巍,张永强,等. 医用β-Ti30Nb13Zr0.5Fe合金的热变形行为[J]. 中国有色金属学报,2010,20(增刊1):357-364. GUO A H,YU W,ZHANG Y Q,et al.Hot deformation behaviors of biomedical β-Ti30Nb13Zr0.5Fe alloy[J]. The Chinese Journal of Nonferrous Metals,2010,20(Suppl 1):357-364.
[15] McQUEEN H J, RYAN N D. Constitutive analysis in hot working[J]. Materials Science and Engineering:A, 2002, 322(1/2):43-63.
[16] SELLARS C M, MCTEGART W J. On the mechanism of hot deformation[J]. Acta Metallurgica, 1966, 14(9):1136-1138.
[17] 曲凤盛,周杰,刘旭光,等. TC18钛合金热压缩本构方程及热加工图[J]. 稀有金属材料与工程,2014,43(1):120-124. QU F S,ZHOU J,LIU X G,et al. Constitutive equation and processing map of thermal deformation for TC18 titanium alloy[J]. Rare Metal Materials and Engineering,2014,43(1):120-124.
[18] 欧阳德来. TB6和TA15钛合金β锻组织演变及动态再结晶行为研究[D].南京:南京航空航天大学,2011:61. OUYANG D L.Research on microstructure evolution and dynamic recrystallization behavior of titanium alloy TB6 and TA15 during β forging[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2011:61.
[19] 权国政,赵磊,张艳伟,等. Ti-6Al-2Zr-1Mo-1V合金热变形激活动态再结晶的临界条件识别及表征[J]. 功能材料,2012,43(2):222-226. QUAN G Z,ZHAO L,ZHANG Y W,et al.An identification and characterization for the dynamic recrystallization critical conditions of Ti-6Al-2Zr-1Mo-1V alloy[J].Journal of Functional Materials,2012,43(2):222-226.
[20] POLIAK E I, JONAS J J.A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization[J].Acta Materialia,1996,44(1):127-136.
[21] NAJAFIZADEH A, JONAS J J. Predicting the critical stress for initiation of dynamic recrystallization[J]. ISIJ International, 2006,46(11):1679-1684.
[22] GAO W L, BAI G R, ZHOU Z M. An evolution model of dislocation patterns in plastic deformation and its applications[J]. Science in China Series A,1995,38(7):875-883.
[1] 任书杰, 罗飞, 田野, 刘大博, 王克鲁, 鲁世强. A100超高强度钢的流变应力曲线修正与唯象本构关系[J]. 材料工程, 2019, 47(6): 144-151.
[2] 党赏, 李艳国, 邹芹, 王明智, 熊建超, 罗文奇. 机械合金化和粉末冶金法制备Fe-Mn-Si基形状记忆合金的研究进展[J]. 材料工程, 2019, 47(5): 18-25.
[3] 赵双赞, 燕绍九, 陈翔, 洪起虎, 李秀辉, 戴圣龙. 石墨烯纳米片增强铝基复合材料的动态力学行为[J]. 材料工程, 2019, 47(3): 23-29.
[4] 王宇, 熊柏青, 李志辉, 温凯, 黄树晖, 李锡武, 张永安. 新型超高强Al-Zn-Mg-Cu合金热压缩变形行为及微观组织特征[J]. 材料工程, 2019, 47(2): 99-106.
[5] 屈盛官, 杨章选, 赖福强, 和锐亮, 付志强, 李小强. 渗铜量对铁基粉末冶金气门座圈材料微动磨损性能的影响[J]. 材料工程, 2018, 46(7): 136-143.
[6] 朱怀沈, 聂义宏, 赵帅, 王宝忠. 镍基617合金动态再结晶微观组织演变与预测[J]. 材料工程, 2018, 46(6): 80-87.
[7] 杨志强, 刘正东, 何西扣, 刘宁. 反应堆压力容器用SA508Gr.4N钢的热变形行为[J]. 材料工程, 2017, 45(8): 88-95.
[8] 付平, 刘栩, 戴青松, 张佳琪, 邓运来. 5083铝合金热压缩流变应力曲线修正与本构方程[J]. 材料工程, 2017, 45(8): 76-82.
[9] 王忠军, 付学丹, 朱晶, 周乐, 王洪斌. ZK60和ZK60-1.0Er镁合金热压缩变形和加工图[J]. 材料工程, 2017, 45(3): 102-111.
[10] 程明阳, 郝世明, 谢敬佩, 王爱琴, 马窦琴, 孙亚丽. SiCP/Al-Cu复合材料的高温热变形行为[J]. 材料工程, 2017, 45(2): 17-23.
[11] 张坤, 臧金鑫, 陈军洲, 伊琳娜, 汝继刚, 康唯. 新型Al-Zn-Mg-Cu合金热变形组织演化[J]. 材料工程, 2017, 45(1): 14-19.
[12] 谢碧君, 郭逸丰, 徐斌, 孙明月, 李殿中. GH984G18合金热加工图及再结晶图研究[J]. 材料工程, 2016, 44(9): 16-23.
[13] 袁武华, 龚雪辉, 孙永庆, 梁剑雄. 0Cr16Ni5Mo低碳马氏体不锈钢的热变形行为及其热加工图[J]. 材料工程, 2016, 44(5): 8-14.
[14] 何卫, 王利民, 蔡炜, 汤超, 姚辉. 氮掺杂碳纳米管/铝基复合材料的制备及性能[J]. 材料工程, 2016, 44(2): 49-55.
[15] 仇琍丽, 高文理, 陆政, 冯朝辉. 7A85铝合金的热压缩流变行为与显微组织[J]. 材料工程, 2016, 44(1): 33-39.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn