Abstract:The new medical Ti-14Mo-2.1Ta-0.9Nb-7Zr alloy was prepared by powder metallurgy. The high temperature compression behavior and the dynamic recrystallization behavior of the alloy were investigated by hot compression tests. The tests were performed with a Gleeble-1500D simulator at 780-960℃ and stain rate of 0.001-1s-1 up to a deformation of 60%.The hyperbolic sine modified Arrhenius model, which included deformation activation energy Q and temperature T, was used to describe the hot compression deformation equation of maximum deformation resistance; and the material parameter function of α(ε), n(ε), Q(ε) and A(ε), was introduced to obtain the constitutive equations. The results show that the flow stress values predicted by the proposed model have a good agreement with experimental results, high value of correlation coefficient (R=0.99430) and low value of average absolute relative error (5.327%); the critical stress and critical stain for dynamic recrystallization (DRX) under different deformation conditions are accurately calculated based on the method of work hardening rate and the inflection points, which are determined by fitting a third order polynomial to the θ-σ and lnθ-ε curves. Then the mathematical models of critical stress versus Z parameter and the critical stress equations of dynamic recrystallization are deduced, the critical strain εc mainly concentrates in the 0.01-0.04 and the critical strains of dynamic recrystallization alloy under different deformation conditions change in tiny.
[1] SAHAGUCHI N, MITSUO N, AKAHORI T,et al.Effects of alloying elements on elastic modulus of Ti-Nb-Ta-Zr system alloy for biomedical applications[J].Materials Science Forum, 2004,449/452:1269-1272.
[2] 胡海波,刘会群,王杰恩,等. 生物医用多孔钛及钛合金的研究进展[J]. 材料导报,2012,26(增刊1):262-266. HU H B,LIU H Q,WANG J E,et al.Research progress of biomedical porous titanium and its alloys[J]. Materials Review,2012, 26(Suppl 1):262-266.
[3] 梁丹丹,王德志,王小鹰,等. 医用Ti-Mo合金的制备及性能分析[J]. 稀有金属材料与工程,2013,42(12):2607-2612. LIANG D D,WANG D Z,WANG X Y,et al. Preparation and characteristics of the medical Ti-Mo alloys[J]. Rare Metal Materials and Engineering,2013,42(12):2607-2612.
[4] 金哲,张万明. 生物医用Ti-6Al-7Nb合金高温变形行为研究[J]. 稀有金属,2012,36(2):218-223. JIN Z,ZHANG W M. High temperature deformation behaviors of biomedical titanium alloy Ti-6Al-7Nb[J]. Chinese Journal of Rare Metals, 2012,36(2):218-223.
[5] RACK H J, QAZI J I. Titanium alloys for biomedical applications[J]. Materials Science and Engineering:C, 2006, 26(8):1269-1277.
[6] GEETHA M, SINGH A K, ASOKAMANI R, et al. Ti based biomaterials, the ultimate choice for orthopaedic implants-a review[J]. Progress in Materials Science, 2009, 54(1):397-425.
[7] JIANG H T,ZENG S W,ZHAO A M, et al. Hot deformation behavior of β phase containing γ-TiAl alloy[J]. Materials Science and Engineering:A,2016,661:160-167.
[8] CHEN H S, LIU X H, LIU G F, et al.Hot deformation behavior and processing map of Ti-6Al-3Nb-2Zr-1Mo titanium alloy[J].Rare Metal Materials and Engineering, 2016, 45(4):901-906.
[9] 王国,惠松骁,叶文君,等. Ti-3.0Al-3.7Cr-2.0Fe低成本钛合金的热压缩变形行为[J]. 中国有色金属学报,2012,22(8):2223-2229. WANG G,HUI S X,YE W J,et al. Hot compressive behavior of Ti-3.0Al-3.7Cr-2.0Fe low cost titanium alloy[J].The Chinese Journal of Nonferrous Metals, 2012,22(8):2223-2229.
[10] 王琪,钱锋,易丹青,等. 粉末冶金TA15钛合金高温塑性变形加工图[J]. 稀有金属材料与工程,2013,42(9):1854-1858. WANG Q,QIAN F,YI D Q,et al. Processing map of powder metallurgy TA15 titanium alloy for high temperature plastic deformation[J]. Rare Metal Materials and Engineering, 2013,42(9):1854-1858.
[11] SAKAI T, JONAS J J. Dynamic recrystallization:mechanical and microstructural considerations[J]. Acta Metallurgica, 1984, 32(2):189-209.
[12] 任军帅. 粉末冶金Ti-47Al-2Nb-2Cr合金高温变形行为及组织演变规律研究[D]. 哈尔滨:哈尔滨工业大学, 2014. REN J S. Hot deformation behavior and microstructure evolution law of PM Ti-47Al-2Nb-2Cr alloy[D]. Harbin:Harbin Institute of Technology,2014.
[13] 刘丽娟,吕明,武文革. 钛合金Ti-6Al-4V热变形中的动态再结晶研究[J]. 热加工工艺,2014,43(24):1-6. LIU L J,LYU M,WU W G. Dynamic recrystallization of Ti-6Al-4V during hot deformation[J]. Hot Working Technology,2014,43(24):1-6.
[14] 郭爱红,余巍,张永强,等. 医用β-Ti30Nb13Zr0.5Fe合金的热变形行为[J]. 中国有色金属学报,2010,20(增刊1):357-364. GUO A H,YU W,ZHANG Y Q,et al.Hot deformation behaviors of biomedical β-Ti30Nb13Zr0.5Fe alloy[J]. The Chinese Journal of Nonferrous Metals,2010,20(Suppl 1):357-364.
[15] McQUEEN H J, RYAN N D. Constitutive analysis in hot working[J]. Materials Science and Engineering:A, 2002, 322(1/2):43-63.
[16] SELLARS C M, MCTEGART W J. On the mechanism of hot deformation[J]. Acta Metallurgica, 1966, 14(9):1136-1138.
[17] 曲凤盛,周杰,刘旭光,等. TC18钛合金热压缩本构方程及热加工图[J]. 稀有金属材料与工程,2014,43(1):120-124. QU F S,ZHOU J,LIU X G,et al. Constitutive equation and processing map of thermal deformation for TC18 titanium alloy[J]. Rare Metal Materials and Engineering,2014,43(1):120-124.
[18] 欧阳德来. TB6和TA15钛合金β锻组织演变及动态再结晶行为研究[D].南京:南京航空航天大学,2011:61. OUYANG D L.Research on microstructure evolution and dynamic recrystallization behavior of titanium alloy TB6 and TA15 during β forging[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2011:61.
[19] 权国政,赵磊,张艳伟,等. Ti-6Al-2Zr-1Mo-1V合金热变形激活动态再结晶的临界条件识别及表征[J]. 功能材料,2012,43(2):222-226. QUAN G Z,ZHAO L,ZHANG Y W,et al.An identification and characterization for the dynamic recrystallization critical conditions of Ti-6Al-2Zr-1Mo-1V alloy[J].Journal of Functional Materials,2012,43(2):222-226.
[20] POLIAK E I, JONAS J J.A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization[J].Acta Materialia,1996,44(1):127-136.
[21] NAJAFIZADEH A, JONAS J J. Predicting the critical stress for initiation of dynamic recrystallization[J]. ISIJ International, 2006,46(11):1679-1684.
[22] GAO W L, BAI G R, ZHOU Z M. An evolution model of dislocation patterns in plastic deformation and its applications[J]. Science in China Series A,1995,38(7):875-883.