Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (8): 1-8    DOI: 10.11868/j.issn.1001-4381.2016.000913
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
热可逆自修复聚氨酯弹性体的制备及表征
杨一林, 卢珣, 王巍巍, 蒋智杰
华南理工大学 材料科学与工程学院, 广州 510640
Preparation and Characterization of Thermally Reversible Self-healing Polyurethane Elastomer
YANG Yi-lin, LU Xun, WANG Wei-wei, JIANG Zhi-jie
School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
全文: PDF(1281 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 为探究本征型自修复聚氨酯材料结构与性能的关系,平衡其自修复效率与强度之间的矛盾,采用六亚乙基二异氰酸酯(HDI)三聚体作交联剂,4,4-二氨基二苯二硫醚(AFD)作扩链剂,将可逆双硫键引入聚酯型聚氨酯弹性体中。研究发现:制备的自修复聚氨酯弹性体拉伸强度可达7.7MPa,在60℃,修复时间为24h的条件下,基于拉伸强度的自修复效率高达97.4%;而普通不含有双硫键(只含氢键作用)的弹性体拉伸强度为9.3MPa,在同等条件下的自修复效率为58.0%,表明双硫键的存在使得弹性体自修复效率在原来的基础上提高了67.9%。制备的弹性体具有多次自修复能力,其二次自修复效率为62.3%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨一林
卢珣
王巍巍
蒋智杰
关键词 4,4-二氨基二苯二硫醚六亚乙基二异氰酸酯三聚体聚氨酯本征型自修复拉伸强度热可逆    
Abstract:In order to investigate the structure and property relationships of intrinsic self-healing polyurethane and balance the seemly contradictory forces between its self-healing efficiency and mechanical strength, the reversible disulfide bonds were introduced into polyester-polyurethane by taking hexamethylene diisocyanate (HDI) trimers as the cross-linker and 4,4-diamino diphenyl disulfide as the chain-extender. The results show that the optimal self-healing elastomer exhibits a tensile strength of 7.7MPa and a maximum self-healing efficiency of 97.4% at 60℃after 24 hours, whereas the common elastomer synthesized without disulfide bonds (via H-bonding interactions) only exhibits a tensile strength of 9.3MPa and a maximum self-healing efficiency of 58.0% under the same condition, indicating that the existence of disulfide bonds helps to increase the self-healing efficiency by 67.9%. The prepared elastomer is found to have multi time self-healing capabilities and the second time self-healing efficiency is 62.3%.
Key words4,4-diamino diphenyl disulfide    hexamethylene diisocyanate trimer    polyurethane    intrinsic self-healing    tensile strength    thermally reversible
收稿日期: 2016-07-27      出版日期: 2017-08-10
中图分类号:  TQ333.99  
通讯作者: 卢珣(1969-),男,副教授,博士,研究方向:本征型自修复材料研究,通讯地址:广东省广州市天河区五山路381号华南理工大学25号楼442(510640),E-mail:luxun@scut.edu.cn     E-mail: luxun@scut.edu.cn
引用本文:   
杨一林, 卢珣, 王巍巍, 蒋智杰. 热可逆自修复聚氨酯弹性体的制备及表征[J]. 材料工程, 2017, 45(8): 1-8.
YANG Yi-lin, LU Xun, WANG Wei-wei, JIANG Zhi-jie. Preparation and Characterization of Thermally Reversible Self-healing Polyurethane Elastomer. Journal of Materials Engineering, 2017, 45(8): 1-8.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000913      或      http://jme.biam.ac.cn/CN/Y2017/V45/I8/1
[1] 方征平, 羊海棠, 徐立华,等. 聚合物基复合材料自修复体系的构成与修复机制分析[J]. 航空材料学报, 2006, 26(3):335-336. FANG Z P, YANG H T, XU L H,et al. Analysis on structure and healing mechanism of self-healing polymer composites[J]. Journal of Aeronautical Materials, 2006, 26(3):335-336.
[2] BEKAS D G, TSIRKA K, BALTZIS D, et al. Self-healing materials;a review of advances in materials, evaluation, characterization and monitoring techniques[J]. Composites Part B:Engineering, 2016, 87:92-119.
[3] AN S Y, NOH S M, NAM J H, et al. Dual sulfide-disulfide crosslinked networks with rapid and room temperature self-healability[J]. Macromolecular Rapid Communications, 2015, 36(13):1255-1260.
[4] PARK J H, BRAUN P V. Coaxial electrospinning of self-healing coatings[J]. Advanced Materials, 2010, 22(4):496-499.
[5] KUHL N, GEITNER R, BOSE R K, et al. Self-healing polymer networks based on reversible michael addition reactions[J]. Macromolecular Chemistry and Physics, 2016, 217(22):2541-2550.
[6] JO Y Y, LEE A S, BAEK K Y, et al. Thermally reversible self-healing polysilsesquioxane structure-property relationships based on Diels-Alder chemistry[J]. Polymer, 2017, 108:58-65.
[7] WAN T, CHEN D. Synthesis and properties of self-healing waterborne polyurethanes containing disulfide bonds in the main chain[J]. Journal of Materials Science, 2017, 52(1):197-207.
[8] IDA S, KIMURA R, TANIMOTO S, et al. End-crosslinking of controlled telechelic poly (N-isopropylacrylamide) toward a homogeneous gel network with photo-induced self-healing[J]. Polymer Journal, 2017, 49(2):237-243.
[9] ENKE M, DÖHLER D, BODE S, et al. Intrinsic self-healing polymers based on supramolecular interactions:state of the art and future directions[M]//Self-healing Materials.Switzerland:Springer International Publishing, 2016:59-112.
[10] TEPPER R, BODE S, GEITNER R, et al. Polymeric halogen-bond-based donor systems showing self-healing behavior in thin films[J]. Angewandte Chemie International Edition, 2017, 56(14):4047-4051.
[11] JIANG H, ZHANG G, FENG X, et al. Room-temperature self-healing tough nanocomposite hydrogel crosslinked by zirconium hydroxide nanoparticles[J]. Composites Science and Technology, 2017, 140:54-62.
[12] MEI J F, JIA X Y, LAI J C, et al. A highly stretchable and autonomous self-healing polymer based on combination of Pt…Pt and π-π interactions[J]. Macromolecular Rapid Communications, 2016, 37(20):1667-1675.
[13] REKONDO A, MARTIN R, DE LUZURIAGA A R, et al. Catalyst-free room-temperature self-healing elastomers based on aromatic disulfide metathesis[J]. Materials Horizons, 2014, 1(2):237-240.
[14] AMAMOTO Y, OTSUKA H, TAKAHARA A, et al. Self-healing of covalently cross-linked polymers by reshuffling thiuram disulfide moieties in air under visible light[J]. Advanced Materials, 2012, 24(29):3975-3980.
[15] LAI J C, MEI J F, JIA X Y, et al. A stiff and healable polymer based on dynamic-covalent boroxine bonds[J]. Advanced Materials, 2016, 28:8277-8282.
[16] YUAN C, RONG M Z, ZHANG M Q. Self-healing polyurethane elastomer with thermally reversible alkoxyamines as crosslinkages[J]. Polymer, 2014, 55(7):1782-1791.
[17] HOBZA P, REZAC J. Introduction:noncovalent interactions[J]. Chemical Reviews,2016, 116(9):4911-4912.
[18] MEDJNOUN A, BAHAR R. Analytical and statistical study of the parameters of expansive soil[J]. International Journal of Environmental, Chemical, Ecological, Geological and Geophysical Engineering, 2016, 10(2):230-233.
[19] TOBOLSKY A V, MACKNIGHT W J, TAKAHASHI M. Relaxation of disulfide and tetrasulfide polymers[J]. The Journal of Physical Chemistry, 1964, 68(4):787-790.
[20] OWEN G D T, MACKNIGHT W J, TOBOLSKY A V. Urethane elastomers containing disulfide and tetrasulfide linkages[J].The Journal of Physical Chemistry,1964,68(4):784-786.
[21] CORDIER P, TOURNILHAC F, SOULIÉ-ZIAKOVIC C, et al. Self-healing and thermoreversible rubber from supramolecular assembly[J]. Nature, 2008, 451(7181):977-980.
[22] WOLINSKA-GRABCZYK A, KACZMARCZYK B, JANKOWSKI A. Investigations of hydrogen bonding in the poly (urethane-urea)-based membrane materials by using FTIR spectroscopy[J].Polish Journal of Chemical Technology,2008,10(4):53-56.
[1] 赵晓华, 魏崇, 苏帅, 崔佳宝, 周建国, 李彩珠, 娄向东. Ag3PO4/ZnO@碳球三元异质结的合成及可见光催化性能[J]. 材料工程, 2019, 47(7): 76-83.
[2] 马明亮, 杨玉莹, 吕平, 贾丽, 贾新城, 陈柳, 孔令运, 池丽凤. 磁性核壳Fe3O4/P (GMA-DVB)-SH-Au复合催化剂的制备及催化性能[J]. 材料工程, 2019, 47(6): 70-76.
[3] 袁晓静, 查柏林, 陈小虎, 禹志航, 王新军. WC-10Co-4Cr涂层在不同温度酸与NaCl溶液中的耐腐蚀性能[J]. 材料工程, 2019, 47(5): 63-71.
[4] 毕松, 汤进, 王鑫, 侯根良, 李军, 刘朝辉, 苏勋家. 共沉淀过程中镍锌添加比例对两步法制备的Ni0.5Zn0.5Fe2O4吸波性能的影响[J]. 材料工程, 2019, 47(4): 91-96.
[5] 张先炼, 何晓聪, 邢保英, 曾凯. TA1纯钛与1420铝锂合金异质薄板自冲铆接微动疲劳特性[J]. 材料工程, 2019, 47(4): 143-151.
[6] 常海, 郭雪刚, 文磊, 金莹. SiC纳米颗粒对TC4钛合金微弧氧化涂层组织结构及耐蚀性能的影响[J]. 材料工程, 2019, 47(3): 109-115.
[7] 周仲炎, 庄宿国, 杨霞辉, 王勉, 罗迎社, 刘煜, 刘秀波. Ti6Al4V合金激光原位合成自润滑复合涂层高温摩擦学性能[J]. 材料工程, 2019, 47(3): 101-108.
[8] 张博, 付琪智, 林森, 陈廷芳, 孙仕勇, 蒋卉. 炭化纳米Co3O4/硅藻土复合材料制备及其性能[J]. 材料工程, 2019, 47(2): 62-67.
[9] 刘英, 张永安, 王卫, 李冬生, 王俊伟, 梁玉冬. Fe对(Cu-Ni-Fe)-xNiFe2O4复合惰性阳极低温铝电解成膜机制的影响[J]. 材料工程, 2019, 47(2): 107-114.
[10] 李浩, 毕松, 侯根良, 苏勋家, 李军, 汤进, 林阳阳. 两步法中煅烧温度对Ni0.5Zn0.5Fe2O4电磁性能的影响[J]. 材料工程, 2019, 47(1): 64-69.
[11] 侯帅, 朱有利, 邱骥, 倪永恒. 喷丸强化对Ti6Al4V半椭圆表面裂纹J积分和裂纹扩展速率的影响[J]. 材料工程, 2019, 47(1): 139-146.
[12] 王娟, 王国宏, 孙玲玲. Ag2CO3/Ag/g-C3N4Z-型异质结的制备及可见光催化降解RhB[J]. 材料工程, 2018, 46(9): 39-45.
[13] 蔡欣, 孙明月, 王卫, 康秀红, 李殿中. 8Cr4Mo4Ni4V航空轴承钢高温奥氏体晶粒长大的数学模型[J]. 材料工程, 2018, 46(9): 131-137.
[14] 何清洋, 朱月华, 卓宁泽, 王海波. K2SiF6:Mn4+发光粉的合成及性能研究[J]. 材料工程, 2018, 46(8): 51-56.
[15] 王敏, 韩进, 张宇, 由美雁, 杨光俊, 柴天昱, 朱彤. Y掺杂量对N-BiVO4可见光催化活性的影响[J]. 材料工程, 2018, 46(6): 36-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn