Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (11): 102-109    DOI: 10.11868/j.issn.1001-4381.2016.000931
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
约束喷射沉积过程中雾化气流场的模拟研究
尹建成1, 杨环1, 刘英莉2, 陈业高1, 张八淇1, 钟毅1
1. 昆明理工大学 材料科学与工程学院, 昆明 650093;
2. 昆明理工大学 信息工程与自动化学院, 昆明 650504
Simulation of Atomization Gas Flow Field During Constrained Spray Deposition Process
YIN Jian-cheng1, YANG Huan1, LIU Ying-li2, CHEN Ye-gao1, ZHANG Ba-qi1, ZHONG Yi1
1. Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China;
2. Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650504, China
全文: PDF(7579 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 采用双旋转盘流型控制器约束雾化射流,利用计算流体动力学Fluent软件模拟分析不同雾化气体压力下约束喷射沉积的流场特性,并进行了实验验证。结果表明:随着雾化气体压力的增加,反向气流速度增大,导流管出口温度降低,极易出现堵塞现象。当雾化气体压力为2.5×105Pa、熔体入口压力为2.0×104Pa时,作用于熔体上的压强最小,约为8.99×103Pa,金属熔体可顺利流出,沉积坯没有明显的氧化现象,雾化效果最好,且沉积坯的宽度与连续挤压机轮槽的宽度一致。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
尹建成
杨环
刘英莉
陈业高
张八淇
钟毅
关键词 喷射成形喷射沉积连续挤压气体压力数值模拟    
Abstract:Double disks controller was used to constrain the size of spray plume. The flow field characteristics of the constrained spray technology under different gas inlet pressures were simulated by the computational fluid dynamics (CFD) software "Fluent", and the simulation result was experimentally verified. The results show that with the increase of atomization gas inlet pressure, the speed of reverse gas flow increases, and thus, the temperature of the nozzle tip decreases. In this case, solidification of the melt in the nozzle occurs. When the inlet pressures of the gas and metal are 2.5×105Pa and 2.0×104Pa respectively, the pressure acting on the melt decreases to minimum value of about 8.99×103Pa.At this condition, the molten metal flows out smoothly and no apparent oxidation phenomena appear in the deposition billet. Moreover, the effect of atomization is the best and the width of the deposition billet is exactly consistent with the width of the wheel groove of continuous extrusion machine.
Key wordsspray forming    spray deposition with continuous extrusion    gas pressure    numerical simulation
收稿日期: 2016-08-07      出版日期: 2018-11-19
中图分类号:  TF124.36  
基金资助: 
通讯作者: 尹建成(1978-),男,工学博士,副教授,主要从事金属材料成形新技术的教学与研究,联系地址:云南省昆明市五华区学府路昆明理工大学(莲华校区)材料科学与工程学院(650093),E-mail:yjc_2002@126.com     E-mail: yjc_2002@126.com
引用本文:   
尹建成, 杨环, 刘英莉, 陈业高, 张八淇, 钟毅. 约束喷射沉积过程中雾化气流场的模拟研究[J]. 材料工程, 2018, 46(11): 102-109.
YIN Jian-cheng, YANG Huan, LIU Ying-li, CHEN Ye-gao, ZHANG Ba-qi, ZHONG Yi. Simulation of Atomization Gas Flow Field During Constrained Spray Deposition Process. Journal of Materials Engineering, 2018, 46(11): 102-109.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000931      或      http://jme.biam.ac.cn/CN/Y2018/V46/I11/102
[1] 赵文军.喷射沉积气体流场与雾化机制研究[D].哈尔滨:哈尔滨工业大学,2012. ZHAO W J. Study on the gas flow field in spray deposition and the breakup mechanism[D].Harbin:Harbin Institute of Technology,2012.
[2] 温利军.喷射成形液滴运动和传热过程及沉积坯的应力研究[D].包头:内蒙古科技大学,2008. WEN L J. Study of motion and transfer heat process of droplet and stress of billet[D].Baotou:Inner Mongolia University of Science and Technology,2008.
[3] 古元军.喷射成形新型雾化器设计的研究[D].沈阳:沈阳工业大学,2009. GU Y J. Research of new spray forming atomizer design[D]. Shenyang:Shenyang University of Technology,2009.
[4] 汪创伟,尹建成,周静波,等.喷射沉积连续挤压制备2A12铝合金[J].中国有色金属学报,2013,23(4):957-963. WANG C W,YIN J C,ZHOU J B,et al.2A12 aluminum alloy produced by spray forming Conform[J].The Chinese Journal of Nonferrous Metals,2013,23(4):957-963.
[5] CHEN Y G,ZHONG Y,YIN J C,et al. Spray Conform 7075 Al[J].RSC Advances,2015,5(118):97612-97618.
[6] 李昊,尹建成,王宇锋,等.喷射沉积连续挤压Al-20Si合金的微观组织及磨损性能[J].材料科学与工程学报,2016,34(2):296-300. LI H,YIN J C,WANG Y F,et al. Microstructure and wear performance of Al-20Si alloy prepared by spray deposition and Conform[J].Journal of Materials Science and Engineering,2016,34(2):296-300.
[7] 张俊一,尹建成,李昊,等.喷射沉积连续挤压制备A1-20Si的参数[J].有色金属工程,2015,5(5):24-28. ZHANG J Y,YIN J C,LI H,et al. Parameters of Al-20Si continuous preparation by spray-conform technology[J].Nonferrous Metals Engineering,2015,5(5):24-28.
[8] 孙剑飞,曹福洋,崔成松,等.金属雾化过程中气体流场动力学行为[J].粉末冶金技术,2002,20(2):79-81. SUN J F,CAO F Y,CUI C S,et al. Dynamic behaviors of gas velocity field during metal atomization[J].Powder Metallurgy Technology,2002,20(2):79-81.
[9] LI F X,LIU Y Z,XIAO W H, et al. Simulation of metal droplet events during gas horizontal atomization stage in the spray rolling of 7050 aluminum alloy[J].Reviews on Advanced Materials Science,2013,33:291-297.
[10] 施立新,李强.雾化压力对冷却速率及冷却时间影响的定量分析[J].计算机与应用化学,2013,30(4):431-434. SHI L X,LI Q. Quantitative analysis of the effect of atomization pressure on the cooling rate and cooling time[J].Computers and Applied Chemistry,2013,30(4):431-434.
[11] 刘杨,李周,许文勇,等.喷射成形雾化器结构对流场的影响[J].粉末冶金技术,2014,32(2):87-92. LIU Y,LI Z,XU W Y,et al. Flow fields simulation of nozzle construction of spray forming atomizer[J].Powder Metallurgy Technology,2014,32(2):87-92.
[12] ZEOLI N,GU S. Computational simulation of metal droplet break-up, cooling and solidification during gas atomization[J]. Computational Materials Science,2008,43(2):268-278.
[13] 李新春,杨明勇.气体压力对雾化颗粒大小的影响[J].湖南有色金属,2009,25(6):28-30. LI X C,YANG M Y. The influence of gas pressure on atomization size[J].Hunan Nonferrous Metals,2009,25(6):28-30.
[14] 唐增武,曹福洋,孙剑飞,等.喷射成形时雾化压力与静压头对雾化熔滴尺寸影响的理论分析[J].粉末冶金技术,2006,24(1):13-17. TANG Z W,CAO F Y,SUN J F,et al. Effect of static head and pressure on atomization droplets size in spray forming:theory analysis[J].Powder Metallurgy Technology,2006,24(1):13-17.
[15] MI J, FIGLIOLA R S,ANDERSON I E. A numerical simulation of gas flow field effects on high pressure gas atomization due to operating pressure variation[J].Materials Science and Engineering:A,1996,208(1):20-29.
[16] MATES S P, BIANCANIELLO F S,RIDDER S D. The effect of swirl on gas velocity decay in a generic annular close-coupled nozzle[M]. Hoboken,US:John Wiley & Sons Inc,2003:21-28.
[17] 刘英莉,尹建成,郑大亮,等.一种与连续挤压机匹配的喷射沉积装置:CN203346464U[P].2013-12-18. LIU Y L,YIN J C,ZHENG D L,et al. Spray deposition device matched with continuous extrusion machine:CN203346464U[P]. 2013-12-18.
[18] JEYAKUMAR M, GUPTA G S, KUMAR S. Modeling of gas flow inside and outside the nozzle used in spray deposition[J].Journal of Materials Processing Technology,2008,203(1/3):471-479.
[19] 代继义,赵玉刚,周成柱.气-固两相流双层雾化器上层锥角参数的数值模拟与优化设计[J].中国粉体技术,2016,22(1):15-18. DAI J Y,ZHAO Y G,ZHOU C Z. Numerical simulation and optimized design of upper taper angle parameter of gas-solid two-phase flow double-layer atomizer[J].China Powder Science and Technology,2016,22(1):15-18.
[20] 张永安,熊柏林,张少明,等.喷射成型过程中雾化粒滴的数值模拟[J].中国有色金属学报,1999,9(增刊1):78-83. ZHANG Y A,XIONG B L,ZHANG S M,et al. Computer simulation of droplets in flight stage during spray forming process[J].The Chinese Journal of Nonferrous Metals,1999,9(Suppl 1):78-83.
[21] ZEOLI N,TABBARA H,GU S.CFD modeling of primary breakup during metal powder atomization[J].Chemical Engineering Science,2011,66(24):6498-6504.
[22] 沈军,蒋祖龄,曾松岩,等.气体雾化过程的增压与吸动现象[J].粉末冶金技术,1994,12(1):15-17. SHEN J,JIANG Z L,ZENG S Y,et al. Pressurization and aspiration phenomena in process of gas atomization[J]. Powder Metallurgy Technology,1994,12(1):15-17.
[23] LIU D M,HAO J Z,YE H Q.Modeling of the solidification of gas-atomized alloy droplets during spray forming[J]. Materials Science and Engineering:A, 2004,372(1/2):229-234.
[24] 张勇,张国庆,李周,等.喷射成形高温合金组织演变过程试验研究[J].钢铁研究学报,2011,23(增刊2):29-32. ZHANG Y,ZHANG G Q,LI Z,et al. Experiments concerning dendrite re-melting and its role in microstructure evolution of spray formed Ni superalloy[J].Journal of Iron and Steel Research,2011,23(Suppl 2):29-32.
[1] 朱怀沈, 聂义宏, 赵帅, 王宝忠. 镍基617合金动态再结晶微观组织演变与预测[J]. 材料工程, 2018, 46(6): 80-87.
[2] 刘多, 刘景和, 周英豪, 宋晓国, 牛红伟, 冯吉才. 紫铜/Al2O3陶瓷/不锈钢复合结构钎焊接头残余应力研究[J]. 材料工程, 2018, 46(3): 61-66.
[3] 梁贤烨, 弭光宝, 李培杰, 曹京霞, 黄旭. 钛合金叶片燃烧后冷却过程的三维热流耦合数值模拟[J]. 材料工程, 2018, 46(10): 37-46.
[4] 卢玉章, 熊英, 彭建强, 申健, 郑伟, 张功, 谢光. 重型燃机定向结晶空心叶片凝固过程的实验与模拟[J]. 材料工程, 2018, 46(1): 8-15.
[5] 孙颖迪, 陈秋荣. AZ31镁合金管材挤压成型数值模拟与实验研究[J]. 材料工程, 2017, 45(6): 1-7.
[6] 朱庆丰, 张扬, 朱成, 班春燕, 崔建忠. 高纯铝多向锻造大塑性变形过程的数值模拟及实验研究[J]. 材料工程, 2017, 45(4): 15-20.
[7] 赵福泽, 朱绍珍, 冯小辉, 杨院生. 高能超声分散纳米晶须的数值和物理模拟[J]. 材料工程, 2016, 44(7): 13-18.
[8] 陈平, 项欣, 李俊玲, 邵天敏, 刘光磊. 沟槽型织构摩擦学性能的数值模拟与实验研究[J]. 材料工程, 2016, 44(6): 31-37.
[9] 张敏, 徐蔼彦, 汪强, 李露露. Al-4%Cu凝固过程枝晶生长的数值模拟[J]. 材料工程, 2016, 44(6): 9-16.
[10] 卢玉章, 申健, 郑伟, 徐正国, 张功, 谢光. 单晶铸件凝固过程工艺优化的数值模拟[J]. 材料工程, 2016, 44(11): 1-8.
[11] 王宁, 李健, 关志军, 谭凯. 工艺参数对钼粉烧结体近等温包套锻造成形过程中应变的影响[J]. 材料工程, 2015, 43(6): 46-51.
[12] 傅田, 李文亚, 杨夏炜, 李锦锋, 高大路. 搅拌摩擦点焊技术及其研究现状[J]. 材料工程, 2015, 43(4): 102-114.
[13] 黄东男, 于洋, 李有来, 左壮壮. 复杂断面空心铝型材分流模挤压焊合过程金属流变行为分析[J]. 材料工程, 2014, 0(9): 68-75.
[14] 杨冬野, 曹福洋, 许文勇, 左欣, 李周, 张国庆, 孙剑飞. 喷射成形GH738合金的疲劳裂纹扩展行为[J]. 材料工程, 2014, 0(7): 55-59.
[15] 王国林, 刘高君, 王磊, 张铃欣. 轮胎胎面胶料共挤出成型的有限元仿真研究[J]. 材料工程, 2014, 0(2): 51-54.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn