Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (9): 101-108    DOI: 10.11868/j.issn.1001-4381.2016.000973
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
响应面法对一种新型摩擦材料的性能优化及其磨损机理
徐祥1,2,3, 杨明1,2,3, 梁益龙1,2,3, 张世伟1,2,3, 龚乾江1,2,3
1. 贵州大学 材料与冶金学院, 贵阳 550025;
2. 贵州省材料结构与强度重点实验室, 贵阳 550025;
3. 高性能金属结构材料与制造技术国家地方联合工程实验室, 贵阳 550025
Optimization of Tribological Properties and Its Wear Mechanism of a New Type Friction Materials with Response Surface Methodology
XU Xiang1,2,3, YANG Ming1,2,3, LIANG Yi-long1,2,3, ZHANG Shi-wei1,2,3, GONG Qian-jiang1,2,3
1. College of Materials Science and Metallurgy, Guizhou University, Guiyang 550025, China;
2. The Key Laboratory for Microstructure of Materials and Mechanical Behavior, Guiyang 550025, China;
3. The National & Local Joint Engineering Laboratory for High-performance Metal Structure Materials and Advanced Manufacture Technology, Guiyang 550025, China
全文: PDF(4535 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用响应面法结合Design-Expert软件对一种有机高摩擦复合材料进行研究,在MMS-2A摩擦磨损试验机上测试材料的摩擦性能,并建立制备工艺参数与摩擦因数、比磨损率之间的二次回归模型。结果表明:二次回归模型的预测值与实验值之间的相关性可达91.97%与87.85%,具有较好的拟合精度;热压工艺中成型温度与成型时间具有显著的交互作用。通过金相显微镜、SEM、3D激光共聚焦显微镜、洛氏硬度计等对磨损表面进行形貌观察和磨损机理分析,发现成型压力、成型温度与成型时间影响复合材料的界面性能,致使摩擦材料表现出不同的摩擦磨损特性。由响应面法结合磨损机理分析得到该材料制备的最优工艺参数为:成型压力19~25MPa,成型温度165~174℃,成型时间18~22min。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐祥
杨明
梁益龙
张世伟
龚乾江
关键词 响应面法摩擦材料制备工艺摩擦性能磨损机理    
Abstract:Preparation technology of an organic high friction composite materials was optimized by RSM(response surface methodology) and Design-Expert software. The friction tests were performed by MMS-2A friction tester. The quadratic regression model was established between process parameters and friction coefficient and wear rate. The results show that the correlation between predictive value and test value of the quadratic regression models has good fitting precision which are 91.97% and 87.85% respectively. There is strong interaction between molding temperature and holding time in the hot-pressing technology. Macro and micro surface morphologies were observed by the metallurgical microscope, scanning electron microscope, 3D measuring laser microscopy and hardness tester. The interfacial properties of the composites are affected by hot pressing process, which determine the tribological properties of composites. The optimum process parameters can be optimized by response surface methodology with the analysis of the wear mechanism, and the optimum hot pressing process are 19-25MPa,165-174℃,18-22min.
Key wordsresponse surface methodology    friction material    manufacturing process    tribological property    wear mechanism
收稿日期: 2016-08-16      出版日期: 2018-09-19
中图分类号:  U260.35  
通讯作者: 杨明(1981-),男,副教授,主要从事金属材料制备与加工,联系地址:贵州省贵阳市花溪区贵州大学材料与冶金学院(550025),E-mail:429428817@qq.com     E-mail: 429428817@qq.com
引用本文:   
徐祥, 杨明, 梁益龙, 张世伟, 龚乾江. 响应面法对一种新型摩擦材料的性能优化及其磨损机理[J]. 材料工程, 2018, 46(9): 101-108.
XU Xiang, YANG Ming, LIANG Yi-long, ZHANG Shi-wei, GONG Qian-jiang. Optimization of Tribological Properties and Its Wear Mechanism of a New Type Friction Materials with Response Surface Methodology. Journal of Materials Engineering, 2018, 46(9): 101-108.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000973      或      http://jme.biam.ac.cn/CN/Y2018/V46/I9/101
[1] 徐祥,杨明. 有机复合摩擦材料及其研究现状[J]. 材料导报,2015,29(21):81-86. XU X,YANG M. Research situation of the organic brake friction materials[J]. Materials Review,2015,29(21):81-86.
[2] 万红,胡凯为,穆景阳,等. 树脂基复合材料在连续激光作用下的损伤[J]. 强激光与粒子束,2008,20(1):6-10. WAN H,HU K W,MU J Y,et al. Damage analysis of fiber reinforced resin matrix composites irradiated by CW laser[J]. High Power Laser & Particle Beams,2008,20(1):6-10.
[3] CHAN D S E A. Review of automotive brake friction materials[J]. Proceedings of the Institution of Mechanical Engineers Part D Journal of Automobile Engineering,2004,218(9):953-966.
[4] YI G,YAN F. Effect of hexagonal boron nitride and calcined petroleum coke on friction and wear behavior of phenolic resin-based friction composites[J]. Materials Science and Engineering:A,2006,425(1/2):330-338.
[5] KOLLURI D K,GHOSH A K,BIJWE J. Performance evaluation of composite friction materials:influence of nature and particle size of graphite[J]. Journal of Reinforced Plastics and Composites,2010,29(18):2842-2854.
[6] KUMAR M,BIJWE J. Optimized selection of metallic fillers for best combination of performance properties of friction materials:a comprehensive study[J]. Wear,2013,303(1/2):569-583.
[7] 马云海,佟金,王宝刚,等. 矿物纤维增强酚醛树脂基摩擦材料热压工艺[J]. 农业工程学报,2012(5):54-59. MA Y H,TONG J,WANG B G,et al. Research on hot-press processing of friction material based on phenolic resin reinforced with mineral fiber[J]. Transactions of the Chinese Society of Agricultural Engineering,2012(5):54-59.
[8] ERTAN R,YAVUZ N. An experimental study on the effects of manufacturing parameters on the tribological properties of brake lining materials[J]. Wear,2010,268(11/12):1524-1532.
[9] 杨艳慧,刘东,贺子延,等. 基于响应面法(RSM)的锻造预成形多目标优化设计[J]. 稀有金属材料与工程,2009(6):1019-1024. YANG Y H,LIU D,HE Z Y,et al. Multi-objective preform optimization using RSM[J]. Rare Metal Materials & Engineering,2009(6):1019-1024.
[10] 方沂,李凤泉. 响应面法在高速加工切削参数优选中的应用[J]. 机械设计,2006(7):34-36. FANG Y,LI F Q. Application of responding surface method on the optimization of cutting parameters in high-speed machining[J]. Journal of Machine Design,2006(7):34-36.
[11] WANG Q,ZHANG X,PEI X. Study on the friction and wear behavior of basalt fabric composites filled with graphite and nano-SiO2[J]. Materials & Design,2010,31(3):1403-1409.
[12] YVCEL E,YVCEL Y,DURAK M. Process optimization for window material CdS thin films grown by a successive ionic layer adsorption and reaction method using response surface methodology[J]. Journal of Alloys and Compounds,2016,664:530-537.
[13] 邹东雷,李婷婷,高梦薇,等. 基于响应面的可见光催化材料制备与优化[J]. 吉林大学学报(地球科学版),2015,45(6):1833-1838. ZOU D L,LI T T,GAO M W,et al. Preparation and optimization of the photocatalytic materials under visible light with response surface methodology[J]. Journal of Jilin University (Earth Science Edition),2015,45(6):1833-1838.
[14] GHASEMNEJAD M,AHMADI E,MOHAMADNIA Z,et al. Functionalized silica nanoparticles as a carrier for betamethasone sodium phosphate:drug release study and statistical optimization of drug loading by response surface method[J]. Materials Science and Engineering:C,2015,56:223-232.
[15] 姚冠新,魏龙庆,王红侠. 多纤维增强重型汽车制动器摩擦材料的摩擦磨损性能研究[J]. 材料导报,2009,23(1):272-274. YAO G X,WEI L Q,WANG H X. Research on friction and wear performances of multi-fibers reinforced heavy-duty vehicles brake[J]. Materials Review,2009,23(1):272-274.
[16] SU L,GAO F,HAN X,et al. Effect of copper powder third body on tribological property of copper-based friction materials[J]. Tribology International,2015,90:420-425.
[17] ERIKSSON M,JACOBSON S. Tribological surfaces of organic brake pads[J]. Tribology International,2000,33(12):817-827.
[18] WANG S,GE S. The mechanical property and tribological behavior of UHMWPE:effect of molding pressure[J]. Wear,2007,263(7/12):949-956.
[19] HONG U S,JUNGA S L,CHOA K H,et al. Wear mechanism of multiphase friction materials with different phenolic resin matrices[J]. Wear,2009,266(7/8):739-744.
[20] 杨昆鹏,高贤,姚文俊,等. 热压工艺对刹车片摩擦磨损性能的影响[J]. 南京工业大学学报(自然科学版),2015,36(6):13-19. YANG K P,GAO X,YAO W J,et al. Effects of hot pressing on friction and wear properties for brake pads[J]. Journal of Nanjing University of Technology(Natural Science Edition),2015,36(6):13-19.
[21] KURT A,BOZ M. Wear behaviour of organic asbestos based and bronze based powder metal brake linings[J]. Materials & Design,2005,26(8):717-721.
[1] 陈海龙, 杨学锋, 王守仁, 鹿重阳, 吴元博. 改性酚醛树脂陶瓷摩擦材料的摩擦磨损性能[J]. 材料工程, 2019, 47(6): 108-113.
[2] 张欣悦, 张德坤, 陈凯, 徐寒冬. 聚醚醚酮与髌骨软骨间的生物摩擦学特性[J]. 材料工程, 2019, 47(2): 129-137.
[3] 税玥, 冯可芹, 岳慧芳, 张燕燕, 严子迪. Ni含量对钒钛磁铁矿原位合成制备铁基摩擦材料的影响[J]. 材料工程, 2018, 46(9): 73-79.
[4] 屈盛官, 杨章选, 赖福强, 和锐亮, 付志强, 李小强. 渗铜量对铁基粉末冶金气门座圈材料微动磨损性能的影响[J]. 材料工程, 2018, 46(7): 136-143.
[5] 梁智鹏, 王一雍, 金辉, 周新宇, 刘香琳. Ni-Co/纳米ZrO2复合材料的电化学行为及摩擦磨损性能[J]. 材料工程, 2018, 46(5): 112-119.
[6] 杨瑞, 齐哲, 杨金华, 焦健. 氧化物/氧化物陶瓷基复合材料及其制备工艺研究进展[J]. 材料工程, 2018, 46(12): 1-9.
[7] 张浩, 黄新杰, 宗志芳, 刘秀玉. 基于吸附性能的生物质基多孔活性炭制备方案的响应面法优化[J]. 材料工程, 2017, 45(6): 67-72.
[8] 陈青云, 施凯敏, 苏敏华, 吕会议, 罗瑜, 曾陈. 类金刚石膜研究进展[J]. 材料工程, 2017, 45(3): 119-128.
[9] 张鉴炜, 石刚, 江大志. Buckypaper/环氧复合材料加压滤渗浸渍法制备工艺研究[J]. 材料工程, 2016, 44(7): 1-6.
[10] 谢红波, 刘贵仲, 郭景杰, 周敏, 刘德飘, 毛炜乾. Al元素对AlxFeCrCoCuV高熵合金组织及摩擦性能的影响[J]. 材料工程, 2016, 44(4): 65-70.
[11] 黄俊钦, 林有希. 制动频率对CaSO4晶须增强树脂基复合摩擦材料性能的影响[J]. 材料工程, 2016, 44(2): 94-100.
[12] 樊浩, 邢丽, 叶寅, 柯黎明, 傅徐荣. 旋转摩擦挤压制备MWCNTs/Al复合材料的组织及磨损性能[J]. 材料工程, 2016, 44(10): 47-53.
[13] 刘莹莹, 郑立静, 张虎. 快速凝固Al-Fe-V-Si耐热铝合金研究进展[J]. 材料工程, 2015, 43(11): 91-97.
[14] 刘毅, 魏世丞, 童辉, 田浩亮, 徐滨士. 热喷涂制备吸波涂层的研究进展[J]. 材料工程, 2014, 0(9): 106-112.
[15] 李奇, 王宪成, 蔡志海, 底月兰, 何星. null[J]. 材料工程, 2014, 0(6): 56-61.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn