Research Progress in Tunable Surface Morphology in Soft Materials and Applications
Chao TANG1,2, Hua-ling CHEN1,2,*(), Bo LI1,3, Xue-jing LIU1,2
1 School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China 2 State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an 710049, China 3 State Key Laboratory for Mechanical Manufacturing System Engineering, Xi'an Jiaotong University, Xi'an 710049, China
The special functions of surface morphology in nature have attracted many scholars' interest, and the control of soft-rigid composites has become a hotspot in recent years. The common soft material surface morphological formation methods, including pre-stretched method, heat treating method and swelling method, were introduced in this paper and a way for the generation of surface morphology was provided. The application of surface morphology in engineering including fluid dynamics, optics, and other fields were introduced, and some ideas for reference in wide engineering application were provided. On the basis of this, the development trend of the active control and generation method of the surface morphology was prospected.
WANG Q , ZHAO X . Beyond wrinkles:multimodal surface instabilities for multifunctional patterning[J]. Mrs Bulletin, 2016, 41 (2): 115- 122.
doi: 10.1557/mrs.2015.338
2
WANG L , CASTRO C E , BOYCE M C . Growth strain-induced wrinkled membrane morphology of white blood cells[J]. Soft Matter, 2011, 7 (24): 11319- 11324.
doi: 10.1039/c1sm06637d
3
HOHLFELD E , MAHADEVAN L . Scale and nature of sulcification patterns[J]. Physical Review Letters, 2012, 109 (2): 1- 4.
4
TALLINEN T , BIGGINS J S , MAHADEVAN L . Surface sulci in squeezed soft solids[J]. Physical Review Letters, 2014, 110 (2): 1154.
5
CERDA E , MAHADEVAN L . Geometry and physics of wrinkling[J]. Physical Review Letters, 2003, 90 (7): 074302.
doi: 10.1103/PhysRevLett.90.074302
6
JIE Y , GERLING G J , XI C . Mechanical modeling of a wrinkled fingertip immersed in water[J]. Acta Biomaterialia, 2010, 6 (4): 1487- 1496.
doi: 10.1016/j.actbio.2009.10.025
7
MALSHE A , RAJURKAR K , SAMANT A , et al. Bio-inspired functional surfaces for advanced applications[J]. CIRP Annals-Manufacturing Technology, 2013, 62 (2): 607- 628.
doi: 10.1016/j.cirp.2013.05.008
8
DENIS T , MIHA B , REIS P M . Smart morphable surfaces for aerodynamic drag control[J]. Advanced Materials, 2014, 26 (38): 6608- 6611.
doi: 10.1002/adma.v26.38
9
CHEN X , YIN J . Buckling patterns of thin films on curved compliant substrates with applications to morphogenesis and three-dimensional micro-fabrication[J]. Soft Matter, 2010, 6 (22): 5667- 5680.
doi: 10.1039/c0sm00401d
10
SONG J , JIANG H , HUANG Y , et al. Mechanics of stretchable inorganic electronic materials[J]. Journal of Vacuum Science & Technology A Vacuum Surfaces & Films, 2009, 27 (5): 1107- 1125.
11
GENZER J , GROENEWOLD J . Soft matter with hard skin:From skin wrinkles to templating and material characterization[J]. Soft Matter, 2006, 2 (2): 310- 323.
12
CHUNG J Y , A J N , STAFFORD C M . Surface wrinkling:a versatile platform for measuring thin-film properties[J]. Advanced Materials, 2011, 23 (3): 349- 368.
doi: 10.1002/adma.201001759
13
YANG S , KRISHNACHARYA K , LIN P . Harnessing surface wrinkle patterns in soft matter[J]. Advanced Functional Materials, 2010, 20 (16): 2550- 2564.
doi: 10.1002/adfm.201000034
14
GUVENDIREN M , YANG S , BURDICK J A . Swelling-induced surface patterns in hydrogels with gradient crosslinking density[J]. Advanced Functional Materials, 2009, 19 (19): 3038- 3045.
doi: 10.1002/adfm.v19:19
15
SINGAMANENI S , McCONNEY M E , TSUKRUK V V . Spontaneous self-folding in confined ultrathin polymer gels[J]. Advanced Materials, 2010, 22 (11): 1263- 1268.
doi: 10.1002/adma.v22:11
CHAN E , CROSBY A . Fabricating microlens arrays by surface wrinkling[J]. Advanced Materials, 2006, 18 (24): 3238- 3242.
doi: 10.1002/(ISSN)1521-4095
18
CHANDRA D , YANG S , LIN P C . Strain responsive concave and convex microlens arrays[J]. Applied Physics Letters, 2007, 91 (25): 251912.
doi: 10.1063/1.2827185
19
MEI H , HUANG R , CHUNG J Y , et al. Buckling modes of elastic thin films on elastic substrates[J]. Applied Physics Letters, 2007, 90 (15): 151902.
doi: 10.1063/1.2720759
20
KIM , DAE HYEONG , ROGERS J A . Stretchable electronics:materials strategies and devices[J]. Advanced Materials, 2008, 20 (24): 4887- 4892.
doi: 10.1002/adma.v20:24
21
CHOI W M , SONG J Z , KHANG D Y , et al. Biaxially stretchable "wavy" silicon nanomembranes[J]. Nano Letters, 2007, 7 (6): 1655- 1663.
doi: 10.1021/nl0706244
22
CAO Y P , ZhENG X P , Li B , et al. Determination of the elastic modulus of micro-and nanowires/tubes using a buckling-based metrology[J]. Scripta Materialia, 2009, 61 (11): 1044- 1047.
doi: 10.1016/j.scriptamat.2009.08.023
23
STAFFORD C M , HARRISON C , BEERS K L , et al. A buckling-based metrology for measuring the elastic moduli of polymeric thin films[J]. Nature Materials, 2004, 3 (8): 545- 550.
doi: 10.1038/nmat1175
24
LI B , CAO Y P , FENG X Q , et al. Mechanics of morphological instabilities and surface wrinkling in soft materials:a review[J]. Soft Matter, 2012, 8 (21): 5728- 5745.
doi: 10.1039/c2sm00011c
25
HUANG J , LIU J , KROLL B , et al. Spontaneous and deterministic three-dimensional curling of pre-strained elastomeric bi-strips[J]. Soft Matter, 2012, 8 (23): 6291- 6300.
doi: 10.1039/c2sm25278c
26
BREID D , CROSBY A J . Curvature-controlled wrinkle morphologies[J]. Soft Matter, 2013, 9 (13): 3624- 3630.
doi: 10.1039/c3sm27331h
27
LIU X , LI B , CHEN H , et al. Voltage-induced wrinkling behavior of dielectric elastomer[J]. Journal of Applied Polymer Science, 2015, 133 (14): 43258.
28
LI B , LIU X , LIU L , et al. Voltage-induced crumpling of a dielectric membrane[J]. Europhysics Letters, 2015, 112 (5): 56004.
doi: 10.1209/0295-5075/112/56004
LIN P C , VAJPAYEE S , JAGOTA A , et al. Mechanically tunable dry adhesive from wrinkled elastomers[J]. Soft Matter, 2008, 4 (9): 1830- 1835.
doi: 10.1039/b802848f
31
OHZONO T , SHIMOMURA M . Ordering of microwrinkle patterns by compressive strain[J]. Phys Rev B, 2004, 24 (69): 186- 190.
32
OHZONO T , SHIMOMURA M . Geometry-dependent stripe rearrangement processes induced by strain on preordered microwrinkle patterns[J]. Langmuir, 2005, 21 (16): 7230- 7237.
doi: 10.1021/la0503449
33
LIN P C , YANG S . Spontaneous formation of one-dimensional ripples in transit to highly ordered two-dimensional herringbone structures through sequential and unequal biaxial mechanical stretching[J]. Applied Physics Letters, 2007, 90 (24): 505- 515.
34
JIANG H , KHANG D Y , SONG J , et al. Finite deformation mechanics in buckled thin films on compliant supports[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104 (40): 15607.
doi: 10.1073/pnas.0702927104
35
UCHIDA N , OHZONO T . Orientational ordering of buckling-induced microwrinkles on soft substrates[J]. Soft Matter, 2010, 6 (22): 5729- 5735.
doi: 10.1039/c0sm00357c
36
CHEN C M , YANG S . Wrinkling instabilities in polymer films and their applications[J]. Polymer International, 2012, 61 (7): 1041- 1047.
doi: 10.1002/pi.v61.7
37
PELRINE R , KORNBLUH R , PEI B , et al. High-speed electrically actuated elastomers with strain greater than 100%[J]. Science, 2000, 287 (5454): 836- 839.
doi: 10.1126/science.287.5454.836
38
KOFOD G , SOMMER-LARSEN P , KORNBLUH R , et al. Actuation response of polyacrylate dielectric elastomers[J]. J Intel Mater System Struct, 2003, 14 (12): 787- 793.
doi: 10.1177/104538903039260
39
WISSLER M , MAZZA E . Modeling of a pre-strained circular actuator made of dielectric elastomers[J]. Sen Actuators A, 2005, 120 (1): 184- 192.
doi: 10.1016/j.sna.2004.11.015
40
LOCHMATTER P , KOVACS G , WISSLER M . Characterization of dielectric elastomer actuators based on a visco-hyperelastic film model[J]. Smart Mater Struct, 2007, 16 (2): 477- 486.
doi: 10.1088/0964-1726/16/2/028
41
MOLBERG M , LETERRIER Y , PLUMMER C . Frequency dependent dielectric and mechanical behavior of elastomers for actuator applications[J]. J Appl Phys, 2009, 106, 1- 7.
SHANG J W , ZHANG Y H , LU F Z , et al. Recent progress of high-dielectric-constant polymer composites[J]. Journal of Materials Engineering, 2012, (5): 87- 92.
CHEN H L , WANG Y Q , SHENG J J , et al. Research of electro-active polymer and its application in actuators[J]. Journal of Mechanical Engineering, 2013, 49 (6): 205- 214.
44
李博. 介电弹性材料驱动器的力电耦合机理及稳定性研究[D]. 西安: 西安交通大学, 2012.
44
LI B. Electromechanical coupling and stability in dielectric elastomer actuator[D]. Xi'an: Xi'an Jiaotong University, 2012.
45
KOLLOSCHE M , ZHU J , SUO Z , et al. Complex interplay of nonlinear processes in dielectric elastomers[J]. Physical Review E Statistical Physics Plasmas Fluids & Related Interdisciplinary Topics, 2012, 85, 976- 986.
46
WANG Q , ZHANG L , ZHAO X . Creasing to cratering instability in polymers under ultrahigh electric fields[J]. Physical Review Letters, 2011, 106 (11): 404- 406.
47
童屹. PDMS基多孔皱纹的制备及其应用[D]. 天津: 天津大学, 2012.
47
TONG Y. Fabrication and application of PDMS-based porous wrinkles[D]. Tianjin: Tianjin University, 2012.
48
BOWDEN N , BRITTAIN S , EVANS A G , et al. Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer[J]. Nature, 1998, 393 (6681): 146- 149.
doi: 10.1038/30193
49
STAFFORD C M , CHUNG J Y , NOLTE A J . Diffusion-controlled, self-organized growth of symmetric wrinkling patterns[J]. Advanced Materials, 2010, 21 (13): 1358- 1362.
50
GUVENDIREN M , YANG S , BURDICK J A . Swelling-induced surface patterns in hydrogels with gradient crosslinking density[J]. Advanced Functional Materials, 2009, 19 (19): 3038- 3045.
doi: 10.1002/adfm.v19:19
51
CHAN E P , SMITH E J , HAYWARD R C , et al. Surface wrinkles for smart adhesion[J]. Advanced Materials, 2008, 20 (4): 711- 716.
doi: 10.1002/(ISSN)1521-4095
52
CHUNG J Y , YOUNGBLOOD J P , STAFFORD C M . Anisotropic wetting on tunable micro-wrinkled surfaces[J]. Soft Matter, 2007, 3 (9): 1163- 1169.
doi: 10.1039/b705112c
53
EFIMENKO K , RACKAITIS M , MANIAS E , et al. Nested self-similar wrinkling patterns in skins[J]. Nature Materials, 2005, 4 (4): 293- 297.
doi: 10.1038/nmat1342
54
KHARE K , ZHOU J , YANG S . Tunable open-channel microfluidics on soft poly(dimethylsiloxane) (PDMS) substrates with sinusoidal grooves[J]. Langmuir the ACS Journal of Surfaces & Colloids, 2009, 25 (21): 12794- 12799.
55
KHANG D Y , JIANG H , HUANG Y , et al. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates[J]. Science, 2006, 311 (5758): 208- 212.
doi: 10.1126/science.1121401
56
LACOUR S P , WAGNER S , HUANG Z , et al. Stretchable gold conductors on elastomeric substrates[J]. Applied Physics Letters, 2003, 82 (15): 2404- 2406.
doi: 10.1063/1.1565683
57
LACOUR S P , JONES J , WAGNER S , et al. Stretchable interconnects for elastic electronic surfaces[J]. Proceedings of the IEEE, 2005, 93 (8): 1459- 1467.
doi: 10.1109/JPROC.2005.851502
58
WATANABE M , SHIRAI H , HIRAI T . Wrinkled polypyrrole electrode for electroactive polymer actuators[J]. Journal of Applied Physics, 2002, 92 (8): 4631- 4637.
doi: 10.1063/1.1505674
59
YU C , MASARAPU C , RONG J , et al. Stretchable supercapacitors based on buckled single-walled carbon-nanotube macrofilms[J]. Advanced Materials, 2009, 21 (47): 4793- 4797.
doi: 10.1002/adma.200901775
60
MAI T L , CLEM W C , TAKAYAMA S . Reversible on-demand cell alignment using reconfigurable microtopography[J]. Biomaterials, 2008, 29 (11): 1705- 1712.
doi: 10.1016/j.biomaterials.2007.12.010
61
EFIMENKO K , FINLAY J , CALLOW M E , et al. Development and testing of hierarchically wrinkled coatings for marine antifouling[J]. ACS Applied Materials & Interfaces, 2009, 1 (5): 1031- 1040.
62
EPSTEIN A K , HONG D , KIM P , et al. Biofilm attachment reduction on bioinspired, dynamic, micro-wrinkling surfaces[J]. New Journal of Physics, 2013, 15 (9): 567- 587.
63
WANG Q , TAHIR M , ZANG J , et al. Dynamic electrostatic lithography:multiscale on-demand patterning on large-area curved surfaces[J]. Advanced Materials, 2012, 24 (15): 1947- 1951.
doi: 10.1002/adma.201200272
64
WANG Q , ROBINSON D , ZHAO X . On-demand hierarchical patterning with electric fields[J]. Applied Physics Letters, 2014, 104 (23): 231605.
doi: 10.1063/1.4882416
65
XU B , CHEN D , HAYWARD R C . Mechanically gated electrical switches by creasing of patterned metal/elastomer bilayer films[J]. Advanced Materials, 2014, 26 (25): 4381- 4385.
doi: 10.1002/adma.v26.25
66
KIM J , YOON J , HAYWARD R C . Dynamic display of biomolecular patterns through an elastic creasing instability of stimuli-responsive hydrogels[J]. Nature Material, 2009, 9 (2): 159- 164.
67
SAHA K , KIM J , IRWIN E , et al. Surface creasing instability of soft polyacrylamide cell culture substrates[J]. Biophysical Journal, 2010, 99 (12): 94- 96.
doi: 10.1016/j.bpj.2010.09.045
68
CHAN E P , KARP J M , LANGER R S . A "self-pinning" adhesive based on responsive surface wrinkles[J]. Journal of Polymer Science Part B Polymer Physics, 2011, 49 (1): 40- 44.
doi: 10.1002/polb.22165
69
YOON J , BIAN P , KIM J , et al. Local switching of chemical patterns through light-triggered unfolding of creased hydrogel surfaces[J]. Angewandte Chemie, 2012, 51 (29): 7146- 7149.
doi: 10.1002/anie.201202692
70
KIM J B , KIM P , PéGARD N C , et al. Wrinkles and deep folds as photonic structures in photovoltaics[J]. Nature Photonics, 2012, 6 (5): 327- 332.
doi: 10.1038/nphoton.2012.70
71
BVTTNER C C , SCHULZ U . Shark skin inspired riblet structures as aerodynamically optimized high temperature coatings for blades of aeroengines[J]. Smart Materials & Structures, 2011, 20, 1083- 1086.
72
DEAN B , BHUSHAN B . Shark-skin surfaces for fluid-drag reduction in turbulent flow:a review[J]. Philosophical Transactions of the Royal Society A Mathematical Physical & Engineering Sciences, 2010, 368 (1929): 4775- 4806.
73
FISH F E , SHANNAHAN L D . The role of the pectoral fins in body trim of sharks[J]. Journal of Fish Biology, 2000, 56, 1062- 1073.
doi: 10.1111/jfb.2000.56.issue-5
74
WEN L , WEAVER J C , LAUDER G V . Biomimetic shark skin:design, fabrication and hydrodynamic function[J]. Journal of Experimental Biology, 2014, 217 (10): 1656- 1666.
doi: 10.1242/jeb.097097
75
FISH F E . The myth and reality of Gray's paradox:implication of dolphin drag reduction for technology[J]. Bioinspiration & Biomimetics, 2006, 1 (2): R17- R25.
76
NIEROP E A V , ALBEN S , BRENNER M P . How bumps on whale flippers delay stall:an aerodynamic model[J]. Physical Review Letters, 2008, 100 (5): 054502.
doi: 10.1103/PhysRevLett.100.054502
77
BALL P . Engineering shark skin and other solutions[J]. Nature, 1999, 400 (6744): 507- 509.
doi: 10.1038/22883
78
ENDE D V D , KAMMINGA J D , BOERSMA A , et al. Voltage-controlled surface wrinkling of elastomeric coatings[J]. Advanced Materials, 2013, 25 (25): 3438- 3442.
doi: 10.1002/adma.v25.25
79
SHIAN S , CLARKE D R . Electrically tunable window device[J]. Optics Letters, 2016, 41 (6): 1289- 1292.
doi: 10.1364/OL.41.001289
80
ZANG J , RYU S , PUGNO N , et al. Multifunctionality and control of the crumpling and unfolding of large-area grapheme[J]. Nature Materials, 2013, 12 (4): 321- 325.
doi: 10.1038/nmat3542
81
ZENG S , ZHANG D , HUANG W , et al. Bio-inspired sensitive and reversible mechanochromisms via strain-dependent cracks and folds[J]. Nature Communications, 2016, 7, 11802.
doi: 10.1038/ncomms11802
82
KIM P , HU Y , ALVARENGA J , et al. Adaptive materials:rational design of mechano-responsive optical materials by fine tuning the evolution of strain-dependent wrinkling patterns[J]. Advanced Optical Materials, 2013, 1 (5): 381- 388.
doi: 10.1002/adom.v1.5
83
YANG C H , CHEN B , ZHOU J , et al. Electroluminescence of giant stretchability[J]. Advanced Materials, 2015, 28 (22): 4480- 4484.
84
WANG Q , GOSSWEILER G R , CRAIG S L , et al. Cephalopod-inspired design of electro-mechano-chemically responsive elastomers for on-demand fluorescent patterning[J]. Nature Communications, 2014, 5, 4899.
doi: 10.1038/ncomms5899
85
LARSON C , PEELE B , LI S , et al. Highly stretchable electroluminescent skin for optical signaling and tactile sensing[J]. Science, 2016, 351 (6277): 1071- 1074.
doi: 10.1126/science.aac5082
86
KIM S , LASCHI C , TRIMMER B . Soft robotics:a bioinspired evolution in robotics[J]. Trends in Biotechnology, 2013, 31 (5): 287- 294.
doi: 10.1016/j.tibtech.2013.03.002
87
AUTUMN K , LIANG Y A , HSIEH S T , et al. Adhesive force of a single gecko foot-hair[J]. Nature, 2000, 405 (6787): 681- 685.
doi: 10.1038/35015073
88
CHAN E, J , S E, C , H R , et al. Surface wrinkles for smart adhesion[J]. Advanced Materials, 2008, 20 (4): 711- 716.
doi: 10.1002/(ISSN)1521-4095
89
LIN P C , VAJPAYEE S , JAGOTA A , et al. Mechanically tunable dry adhesive from wrinkled elastomers[J]. Soft Matter, 2008, 4 (9): 1830- 1835.
doi: 10.1039/b802848f
90
SHIVAPOOJA P , WANG Q , ORIHUELA B , et al. Bioinspired surfaces with dynamic topography for active control of biofouling[J]. Advanced Materials, 2013, 25 (10): 1430- 1434.
doi: 10.1002/adma.v25.10