Please wait a minute...
 
2222材料工程  2018, Vol. 46 Issue (3): 131-141    DOI: 10.11868/j.issn.1001-4381.2016.000989
  综述 本期目录 | 过刊浏览 | 高级检索 |
软材料表面形貌调控与应用研究进展
汤超1,2, 陈花玲1,2,*(), 李博1,3, 刘学婧1,2
1 西安交通大学 机械工程学院, 西安 710049
2 西安交通大学 机械结构强度与振动国家重点实验室, 西安 710049
3 西安交通大学 机械制造系统工程国家重点实验室, 西安 710049
Research Progress in Tunable Surface Morphology in Soft Materials and Applications
Chao TANG1,2, Hua-ling CHEN1,2,*(), Bo LI1,3, Xue-jing LIU1,2
1 School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
2 State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an 710049, China
3 State Key Laboratory for Mechanical Manufacturing System Engineering, Xi'an Jiaotong University, Xi'an 710049, China
全文: PDF(6468 KB)   HTML ( 43 )  
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 

自然界不同生物表面形貌的特殊功能与作用吸引了众多学者的研究兴趣,而基于软硬材料层状复合结构的表面形貌调控近年来也成为一个研究热点。本文首先介绍了软材料表面形貌形成的几种常用方法,包括预拉伸法、热处理法、溶剂溶胀法,为表面形貌的产生提供了途径。然后对软材料表面形貌在众多工程领域,包括流体动力学、光学等方面的应用做了简介,为其更广阔的工程应用提供了借鉴。在此基础上,对表面形貌的产生方法以及软材料在表面形貌主动调控方面的应用发展趋势进行了展望。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
汤超
陈花玲
李博
刘学婧
关键词 软材料复合结构表面形貌工程应用    
Abstract

The special functions of surface morphology in nature have attracted many scholars' interest, and the control of soft-rigid composites has become a hotspot in recent years. The common soft material surface morphological formation methods, including pre-stretched method, heat treating method and swelling method, were introduced in this paper and a way for the generation of surface morphology was provided. The application of surface morphology in engineering including fluid dynamics, optics, and other fields were introduced, and some ideas for reference in wide engineering application were provided. On the basis of this, the development trend of the active control and generation method of the surface morphology was prospected.

Key wordssoft material    composite structure    surface morphology    engineering application
收稿日期: 2016-08-20      出版日期: 2018-03-20
中图分类号:  TB381  
基金资助:国家自然科学基金项目(11402184);国家重点实验室开放课题研究基金(sklms2016003)
通讯作者: 陈花玲     E-mail: hlchen@mail.xjtu.edu.cn
作者简介: 陈花玲(1954-), 女, 教授, 博士, 研究方向:智能材料与结构, 联系地址:陕西省西安市咸宁西路28号西安交通大学机械工程学院(710049), E-mail:hlchen@mail.xjtu.edu.cn
引用本文:   
汤超, 陈花玲, 李博, 刘学婧. 软材料表面形貌调控与应用研究进展[J]. 材料工程, 2018, 46(3): 131-141.
Chao TANG, Hua-ling CHEN, Bo LI, Xue-jing LIU. Research Progress in Tunable Surface Morphology in Soft Materials and Applications. Journal of Materials Engineering, 2018, 46(3): 131-141.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000989      或      http://jme.biam.ac.cn/CN/Y2018/V46/I3/131
Fig.1  三种典型的表面形貌[25] (a)褶皱;(b)折叠;(c)折痕
Fig.2  机械拉伸释放并经氧化处理形成的褶皱[36] (a)制作流程;(b)交替拉伸释放;(c)同时拉伸释放
Fig.3  DE电致变形原理及褶皱现象(a) DE材料平面驱动器结构的电致变形过程;(b)DE材料电致变形引起的褶皱
Fig.4  软材料表面形貌的主动控制[46] (a)实验设置;(b)不同电压下的折痕形貌
Fig.5  水凝胶表面褶皱
Fig.6  去离子水诱导聚PHEMA水凝胶膜产生不同的褶皱形貌上图为彩色图,下图为灰度图[50]
Surface
morphology
Application Modulus
ratio
Ref.
Wrinkle Adhesion 10-100 [33, 51]
Optics 10-100 [19]
Wetting 10-100 [52]
Microfluidics 0.05-0.33 [53-54]
Measurement of
mechanical properties
0.05-0.1 [24]
Flexible electronics 0.05-0.29 [55-59]
Cell alignment 0.1-0.13 [60]
Drag control 0.1-0.25 [8]
Anti-fouling 0.1-0.17 [61-62]
Crease Tunable texture 0.36-0.5 [63-64]
Flexible electronics 0.3-0.6 [65]
Cell culture 0.36-0.5 [66-67]
Tunable adhesion 0.3-0.5 [68]
Chemical pattern switch 0.36-0.5 [69]
Fold Photovoltaics 0.15-0.2 [70]
Table 1  表面形貌的应用[1]
Fig.7  流场主动控制[8] (a)原始状态;(b)抽真空后的状态;(c)流场示意图;(d)不同真空压力下雷诺数与流阻的关系
Fig.8  透明度主动控制[78] (a)结构示意图;(b)结构变形示意图;(c)通电前;(d)通电后
Fig.9  颜色主动调控[84] (a)章鱼变色机理示意图;(b)弹性体薄膜在单轴拉伸下变色
Fig.10  电致变形原理示意图[84] (a)实验设置及变形机理;(b)不同电压下的荧光图像
Fig.11  表面黏附力的主动调节[89] (a)拉伸状态;(b)释放状态
1 WANG Q , ZHAO X . Beyond wrinkles:multimodal surface instabilities for multifunctional patterning[J]. Mrs Bulletin, 2016, 41 (2): 115- 122.
doi: 10.1557/mrs.2015.338
2 WANG L , CASTRO C E , BOYCE M C . Growth strain-induced wrinkled membrane morphology of white blood cells[J]. Soft Matter, 2011, 7 (24): 11319- 11324.
doi: 10.1039/c1sm06637d
3 HOHLFELD E , MAHADEVAN L . Scale and nature of sulcification patterns[J]. Physical Review Letters, 2012, 109 (2): 1- 4.
4 TALLINEN T , BIGGINS J S , MAHADEVAN L . Surface sulci in squeezed soft solids[J]. Physical Review Letters, 2014, 110 (2): 1154.
5 CERDA E , MAHADEVAN L . Geometry and physics of wrinkling[J]. Physical Review Letters, 2003, 90 (7): 074302.
doi: 10.1103/PhysRevLett.90.074302
6 JIE Y , GERLING G J , XI C . Mechanical modeling of a wrinkled fingertip immersed in water[J]. Acta Biomaterialia, 2010, 6 (4): 1487- 1496.
doi: 10.1016/j.actbio.2009.10.025
7 MALSHE A , RAJURKAR K , SAMANT A , et al. Bio-inspired functional surfaces for advanced applications[J]. CIRP Annals-Manufacturing Technology, 2013, 62 (2): 607- 628.
doi: 10.1016/j.cirp.2013.05.008
8 DENIS T , MIHA B , REIS P M . Smart morphable surfaces for aerodynamic drag control[J]. Advanced Materials, 2014, 26 (38): 6608- 6611.
doi: 10.1002/adma.v26.38
9 CHEN X , YIN J . Buckling patterns of thin films on curved compliant substrates with applications to morphogenesis and three-dimensional micro-fabrication[J]. Soft Matter, 2010, 6 (22): 5667- 5680.
doi: 10.1039/c0sm00401d
10 SONG J , JIANG H , HUANG Y , et al. Mechanics of stretchable inorganic electronic materials[J]. Journal of Vacuum Science & Technology A Vacuum Surfaces & Films, 2009, 27 (5): 1107- 1125.
11 GENZER J , GROENEWOLD J . Soft matter with hard skin:From skin wrinkles to templating and material characterization[J]. Soft Matter, 2006, 2 (2): 310- 323.
12 CHUNG J Y , A J N , STAFFORD C M . Surface wrinkling:a versatile platform for measuring thin-film properties[J]. Advanced Materials, 2011, 23 (3): 349- 368.
doi: 10.1002/adma.201001759
13 YANG S , KRISHNACHARYA K , LIN P . Harnessing surface wrinkle patterns in soft matter[J]. Advanced Functional Materials, 2010, 20 (16): 2550- 2564.
doi: 10.1002/adfm.201000034
14 GUVENDIREN M , YANG S , BURDICK J A . Swelling-induced surface patterns in hydrogels with gradient crosslinking density[J]. Advanced Functional Materials, 2009, 19 (19): 3038- 3045.
doi: 10.1002/adfm.v19:19
15 SINGAMANENI S , McCONNEY M E , TSUKRUK V V . Spontaneous self-folding in confined ultrathin polymer gels[J]. Advanced Materials, 2010, 22 (11): 1263- 1268.
doi: 10.1002/adma.v22:11
16 YOO P J , SUH K Y , PARK S Y , et al. Physical self-assembly of microstructures by anisotropic buckling[J]. Advanced Materials, 2002, 14 (19): 1383- 1387.
doi: 10.1002/1521-4095(20021002)14:19<1383::AID-ADMA1383>3.0.CO;2-D
17 CHAN E , CROSBY A . Fabricating microlens arrays by surface wrinkling[J]. Advanced Materials, 2006, 18 (24): 3238- 3242.
doi: 10.1002/(ISSN)1521-4095
18 CHANDRA D , YANG S , LIN P C . Strain responsive concave and convex microlens arrays[J]. Applied Physics Letters, 2007, 91 (25): 251912.
doi: 10.1063/1.2827185
19 MEI H , HUANG R , CHUNG J Y , et al. Buckling modes of elastic thin films on elastic substrates[J]. Applied Physics Letters, 2007, 90 (15): 151902.
doi: 10.1063/1.2720759
20 KIM , DAE HYEONG , ROGERS J A . Stretchable electronics:materials strategies and devices[J]. Advanced Materials, 2008, 20 (24): 4887- 4892.
doi: 10.1002/adma.v20:24
21 CHOI W M , SONG J Z , KHANG D Y , et al. Biaxially stretchable "wavy" silicon nanomembranes[J]. Nano Letters, 2007, 7 (6): 1655- 1663.
doi: 10.1021/nl0706244
22 CAO Y P , ZhENG X P , Li B , et al. Determination of the elastic modulus of micro-and nanowires/tubes using a buckling-based metrology[J]. Scripta Materialia, 2009, 61 (11): 1044- 1047.
doi: 10.1016/j.scriptamat.2009.08.023
23 STAFFORD C M , HARRISON C , BEERS K L , et al. A buckling-based metrology for measuring the elastic moduli of polymeric thin films[J]. Nature Materials, 2004, 3 (8): 545- 550.
doi: 10.1038/nmat1175
24 LI B , CAO Y P , FENG X Q , et al. Mechanics of morphological instabilities and surface wrinkling in soft materials:a review[J]. Soft Matter, 2012, 8 (21): 5728- 5745.
doi: 10.1039/c2sm00011c
25 HUANG J , LIU J , KROLL B , et al. Spontaneous and deterministic three-dimensional curling of pre-strained elastomeric bi-strips[J]. Soft Matter, 2012, 8 (23): 6291- 6300.
doi: 10.1039/c2sm25278c
26 BREID D , CROSBY A J . Curvature-controlled wrinkle morphologies[J]. Soft Matter, 2013, 9 (13): 3624- 3630.
doi: 10.1039/c3sm27331h
27 LIU X , LI B , CHEN H , et al. Voltage-induced wrinkling behavior of dielectric elastomer[J]. Journal of Applied Polymer Science, 2015, 133 (14): 43258.
28 LI B , LIU X , LIU L , et al. Voltage-induced crumpling of a dielectric membrane[J]. Europhysics Letters, 2015, 112 (5): 56004.
doi: 10.1209/0295-5075/112/56004
29 YOO P J , SUH K Y , PARK S Y , et al. Physical self-assembly of microstructures by anisotropic buckling[J]. Advanced Materials, 2002, 14 (19): 1383- 1387.
doi: 10.1002/1521-4095(20021002)14:19<1383::AID-ADMA1383>3.0.CO;2-D
30 LIN P C , VAJPAYEE S , JAGOTA A , et al. Mechanically tunable dry adhesive from wrinkled elastomers[J]. Soft Matter, 2008, 4 (9): 1830- 1835.
doi: 10.1039/b802848f
31 OHZONO T , SHIMOMURA M . Ordering of microwrinkle patterns by compressive strain[J]. Phys Rev B, 2004, 24 (69): 186- 190.
32 OHZONO T , SHIMOMURA M . Geometry-dependent stripe rearrangement processes induced by strain on preordered microwrinkle patterns[J]. Langmuir, 2005, 21 (16): 7230- 7237.
doi: 10.1021/la0503449
33 LIN P C , YANG S . Spontaneous formation of one-dimensional ripples in transit to highly ordered two-dimensional herringbone structures through sequential and unequal biaxial mechanical stretching[J]. Applied Physics Letters, 2007, 90 (24): 505- 515.
34 JIANG H , KHANG D Y , SONG J , et al. Finite deformation mechanics in buckled thin films on compliant supports[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104 (40): 15607.
doi: 10.1073/pnas.0702927104
35 UCHIDA N , OHZONO T . Orientational ordering of buckling-induced microwrinkles on soft substrates[J]. Soft Matter, 2010, 6 (22): 5729- 5735.
doi: 10.1039/c0sm00357c
36 CHEN C M , YANG S . Wrinkling instabilities in polymer films and their applications[J]. Polymer International, 2012, 61 (7): 1041- 1047.
doi: 10.1002/pi.v61.7
37 PELRINE R , KORNBLUH R , PEI B , et al. High-speed electrically actuated elastomers with strain greater than 100%[J]. Science, 2000, 287 (5454): 836- 839.
doi: 10.1126/science.287.5454.836
38 KOFOD G , SOMMER-LARSEN P , KORNBLUH R , et al. Actuation response of polyacrylate dielectric elastomers[J]. J Intel Mater System Struct, 2003, 14 (12): 787- 793.
doi: 10.1177/104538903039260
39 WISSLER M , MAZZA E . Modeling of a pre-strained circular actuator made of dielectric elastomers[J]. Sen Actuators A, 2005, 120 (1): 184- 192.
doi: 10.1016/j.sna.2004.11.015
40 LOCHMATTER P , KOVACS G , WISSLER M . Characterization of dielectric elastomer actuators based on a visco-hyperelastic film model[J]. Smart Mater Struct, 2007, 16 (2): 477- 486.
doi: 10.1088/0964-1726/16/2/028
41 MOLBERG M , LETERRIER Y , PLUMMER C . Frequency dependent dielectric and mechanical behavior of elastomers for actuator applications[J]. J Appl Phys, 2009, 106, 1- 7.
42 尚继武, 张以河, 吕凤柱. 高介电常数聚合物基复合材料研究进展[J]. 材料工程, 2012, (5): 87- 92.
42 SHANG J W , ZHANG Y H , LU F Z , et al. Recent progress of high-dielectric-constant polymer composites[J]. Journal of Materials Engineering, 2012, (5): 87- 92.
43 陈花玲, 王永泉, 盛俊杰, 等. 电活性聚合物材料及其在驱动器中的应用研究[J]. 机械工程学报, 2013, 49 (6): 205- 214.
43 CHEN H L , WANG Y Q , SHENG J J , et al. Research of electro-active polymer and its application in actuators[J]. Journal of Mechanical Engineering, 2013, 49 (6): 205- 214.
44 李博. 介电弹性材料驱动器的力电耦合机理及稳定性研究[D]. 西安: 西安交通大学, 2012.
44 LI B. Electromechanical coupling and stability in dielectric elastomer actuator[D]. Xi'an: Xi'an Jiaotong University, 2012.
45 KOLLOSCHE M , ZHU J , SUO Z , et al. Complex interplay of nonlinear processes in dielectric elastomers[J]. Physical Review E Statistical Physics Plasmas Fluids & Related Interdisciplinary Topics, 2012, 85, 976- 986.
46 WANG Q , ZHANG L , ZHAO X . Creasing to cratering instability in polymers under ultrahigh electric fields[J]. Physical Review Letters, 2011, 106 (11): 404- 406.
47 童屹. PDMS基多孔皱纹的制备及其应用[D]. 天津: 天津大学, 2012.
47 TONG Y. Fabrication and application of PDMS-based porous wrinkles[D]. Tianjin: Tianjin University, 2012.
48 BOWDEN N , BRITTAIN S , EVANS A G , et al. Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer[J]. Nature, 1998, 393 (6681): 146- 149.
doi: 10.1038/30193
49 STAFFORD C M , CHUNG J Y , NOLTE A J . Diffusion-controlled, self-organized growth of symmetric wrinkling patterns[J]. Advanced Materials, 2010, 21 (13): 1358- 1362.
50 GUVENDIREN M , YANG S , BURDICK J A . Swelling-induced surface patterns in hydrogels with gradient crosslinking density[J]. Advanced Functional Materials, 2009, 19 (19): 3038- 3045.
doi: 10.1002/adfm.v19:19
51 CHAN E P , SMITH E J , HAYWARD R C , et al. Surface wrinkles for smart adhesion[J]. Advanced Materials, 2008, 20 (4): 711- 716.
doi: 10.1002/(ISSN)1521-4095
52 CHUNG J Y , YOUNGBLOOD J P , STAFFORD C M . Anisotropic wetting on tunable micro-wrinkled surfaces[J]. Soft Matter, 2007, 3 (9): 1163- 1169.
doi: 10.1039/b705112c
53 EFIMENKO K , RACKAITIS M , MANIAS E , et al. Nested self-similar wrinkling patterns in skins[J]. Nature Materials, 2005, 4 (4): 293- 297.
doi: 10.1038/nmat1342
54 KHARE K , ZHOU J , YANG S . Tunable open-channel microfluidics on soft poly(dimethylsiloxane) (PDMS) substrates with sinusoidal grooves[J]. Langmuir the ACS Journal of Surfaces & Colloids, 2009, 25 (21): 12794- 12799.
55 KHANG D Y , JIANG H , HUANG Y , et al. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates[J]. Science, 2006, 311 (5758): 208- 212.
doi: 10.1126/science.1121401
56 LACOUR S P , WAGNER S , HUANG Z , et al. Stretchable gold conductors on elastomeric substrates[J]. Applied Physics Letters, 2003, 82 (15): 2404- 2406.
doi: 10.1063/1.1565683
57 LACOUR S P , JONES J , WAGNER S , et al. Stretchable interconnects for elastic electronic surfaces[J]. Proceedings of the IEEE, 2005, 93 (8): 1459- 1467.
doi: 10.1109/JPROC.2005.851502
58 WATANABE M , SHIRAI H , HIRAI T . Wrinkled polypyrrole electrode for electroactive polymer actuators[J]. Journal of Applied Physics, 2002, 92 (8): 4631- 4637.
doi: 10.1063/1.1505674
59 YU C , MASARAPU C , RONG J , et al. Stretchable supercapacitors based on buckled single-walled carbon-nanotube macrofilms[J]. Advanced Materials, 2009, 21 (47): 4793- 4797.
doi: 10.1002/adma.200901775
60 MAI T L , CLEM W C , TAKAYAMA S . Reversible on-demand cell alignment using reconfigurable microtopography[J]. Biomaterials, 2008, 29 (11): 1705- 1712.
doi: 10.1016/j.biomaterials.2007.12.010
61 EFIMENKO K , FINLAY J , CALLOW M E , et al. Development and testing of hierarchically wrinkled coatings for marine antifouling[J]. ACS Applied Materials & Interfaces, 2009, 1 (5): 1031- 1040.
62 EPSTEIN A K , HONG D , KIM P , et al. Biofilm attachment reduction on bioinspired, dynamic, micro-wrinkling surfaces[J]. New Journal of Physics, 2013, 15 (9): 567- 587.
63 WANG Q , TAHIR M , ZANG J , et al. Dynamic electrostatic lithography:multiscale on-demand patterning on large-area curved surfaces[J]. Advanced Materials, 2012, 24 (15): 1947- 1951.
doi: 10.1002/adma.201200272
64 WANG Q , ROBINSON D , ZHAO X . On-demand hierarchical patterning with electric fields[J]. Applied Physics Letters, 2014, 104 (23): 231605.
doi: 10.1063/1.4882416
65 XU B , CHEN D , HAYWARD R C . Mechanically gated electrical switches by creasing of patterned metal/elastomer bilayer films[J]. Advanced Materials, 2014, 26 (25): 4381- 4385.
doi: 10.1002/adma.v26.25
66 KIM J , YOON J , HAYWARD R C . Dynamic display of biomolecular patterns through an elastic creasing instability of stimuli-responsive hydrogels[J]. Nature Material, 2009, 9 (2): 159- 164.
67 SAHA K , KIM J , IRWIN E , et al. Surface creasing instability of soft polyacrylamide cell culture substrates[J]. Biophysical Journal, 2010, 99 (12): 94- 96.
doi: 10.1016/j.bpj.2010.09.045
68 CHAN E P , KARP J M , LANGER R S . A "self-pinning" adhesive based on responsive surface wrinkles[J]. Journal of Polymer Science Part B Polymer Physics, 2011, 49 (1): 40- 44.
doi: 10.1002/polb.22165
69 YOON J , BIAN P , KIM J , et al. Local switching of chemical patterns through light-triggered unfolding of creased hydrogel surfaces[J]. Angewandte Chemie, 2012, 51 (29): 7146- 7149.
doi: 10.1002/anie.201202692
70 KIM J B , KIM P , PéGARD N C , et al. Wrinkles and deep folds as photonic structures in photovoltaics[J]. Nature Photonics, 2012, 6 (5): 327- 332.
doi: 10.1038/nphoton.2012.70
71 BVTTNER C C , SCHULZ U . Shark skin inspired riblet structures as aerodynamically optimized high temperature coatings for blades of aeroengines[J]. Smart Materials & Structures, 2011, 20, 1083- 1086.
72 DEAN B , BHUSHAN B . Shark-skin surfaces for fluid-drag reduction in turbulent flow:a review[J]. Philosophical Transactions of the Royal Society A Mathematical Physical & Engineering Sciences, 2010, 368 (1929): 4775- 4806.
73 FISH F E , SHANNAHAN L D . The role of the pectoral fins in body trim of sharks[J]. Journal of Fish Biology, 2000, 56, 1062- 1073.
doi: 10.1111/jfb.2000.56.issue-5
74 WEN L , WEAVER J C , LAUDER G V . Biomimetic shark skin:design, fabrication and hydrodynamic function[J]. Journal of Experimental Biology, 2014, 217 (10): 1656- 1666.
doi: 10.1242/jeb.097097
75 FISH F E . The myth and reality of Gray's paradox:implication of dolphin drag reduction for technology[J]. Bioinspiration & Biomimetics, 2006, 1 (2): R17- R25.
76 NIEROP E A V , ALBEN S , BRENNER M P . How bumps on whale flippers delay stall:an aerodynamic model[J]. Physical Review Letters, 2008, 100 (5): 054502.
doi: 10.1103/PhysRevLett.100.054502
77 BALL P . Engineering shark skin and other solutions[J]. Nature, 1999, 400 (6744): 507- 509.
doi: 10.1038/22883
78 ENDE D V D , KAMMINGA J D , BOERSMA A , et al. Voltage-controlled surface wrinkling of elastomeric coatings[J]. Advanced Materials, 2013, 25 (25): 3438- 3442.
doi: 10.1002/adma.v25.25
79 SHIAN S , CLARKE D R . Electrically tunable window device[J]. Optics Letters, 2016, 41 (6): 1289- 1292.
doi: 10.1364/OL.41.001289
80 ZANG J , RYU S , PUGNO N , et al. Multifunctionality and control of the crumpling and unfolding of large-area grapheme[J]. Nature Materials, 2013, 12 (4): 321- 325.
doi: 10.1038/nmat3542
81 ZENG S , ZHANG D , HUANG W , et al. Bio-inspired sensitive and reversible mechanochromisms via strain-dependent cracks and folds[J]. Nature Communications, 2016, 7, 11802.
doi: 10.1038/ncomms11802
82 KIM P , HU Y , ALVARENGA J , et al. Adaptive materials:rational design of mechano-responsive optical materials by fine tuning the evolution of strain-dependent wrinkling patterns[J]. Advanced Optical Materials, 2013, 1 (5): 381- 388.
doi: 10.1002/adom.v1.5
83 YANG C H , CHEN B , ZHOU J , et al. Electroluminescence of giant stretchability[J]. Advanced Materials, 2015, 28 (22): 4480- 4484.
84 WANG Q , GOSSWEILER G R , CRAIG S L , et al. Cephalopod-inspired design of electro-mechano-chemically responsive elastomers for on-demand fluorescent patterning[J]. Nature Communications, 2014, 5, 4899.
doi: 10.1038/ncomms5899
85 LARSON C , PEELE B , LI S , et al. Highly stretchable electroluminescent skin for optical signaling and tactile sensing[J]. Science, 2016, 351 (6277): 1071- 1074.
doi: 10.1126/science.aac5082
86 KIM S , LASCHI C , TRIMMER B . Soft robotics:a bioinspired evolution in robotics[J]. Trends in Biotechnology, 2013, 31 (5): 287- 294.
doi: 10.1016/j.tibtech.2013.03.002
87 AUTUMN K , LIANG Y A , HSIEH S T , et al. Adhesive force of a single gecko foot-hair[J]. Nature, 2000, 405 (6787): 681- 685.
doi: 10.1038/35015073
88 CHAN E, J , S E, C , H R , et al. Surface wrinkles for smart adhesion[J]. Advanced Materials, 2008, 20 (4): 711- 716.
doi: 10.1002/(ISSN)1521-4095
89 LIN P C , VAJPAYEE S , JAGOTA A , et al. Mechanically tunable dry adhesive from wrinkled elastomers[J]. Soft Matter, 2008, 4 (9): 1830- 1835.
doi: 10.1039/b802848f
90 SHIVAPOOJA P , WANG Q , ORIHUELA B , et al. Bioinspired surfaces with dynamic topography for active control of biofouling[J]. Advanced Materials, 2013, 25 (10): 1430- 1434.
doi: 10.1002/adma.v25.10
[1] 李军, 刘燕峰, 倪洪江, 张代军, 陈祥宝. 航空发动机用树脂基复合材料应用进展与发展趋势[J]. 材料工程, 2022, 50(6): 49-60.
[2] 贾耀雄, 许良, 敖清阳, 张文正, 王涛, 魏娟. 不同热氧环境对T800碳纤维/环氧树脂复合材料力学性能的影响[J]. 材料工程, 2022, 50(4): 156-161.
[3] 包昂, 卢德宏. WCp/高锰钢基复合材料及复合结构的冲击磨损性能[J]. 材料工程, 2018, 46(4): 91-98.
[4] 刘多, 刘景和, 周英豪, 宋晓国, 牛红伟, 冯吉才. 紫铜/Al2O3陶瓷/不锈钢复合结构钎焊接头残余应力研究[J]. 材料工程, 2018, 46(3): 61-66.
[5] 黎醒, 蒋炳炎, 吕辉, 周明勇, 翁灿. 疏水植物表面微纳复合结构电铸模芯的制备[J]. 材料工程, 2018, 46(2): 66-72.
[6] 刘用, 马胜国, 刘英杰, 张腾, 杨慧君. AlxCrCuFeNi2多主元高熵合金的摩擦磨损性能[J]. 材料工程, 2018, 46(2): 99-104.
[7] 艾青, 杨灿星, 黄仁忠, 杨艳飞, 邹文祥, 袁颂东. 一种新型SnO2@BNNSs@C纳米复合结构及其电化学储能特性[J]. 材料工程, 2018, 46(11): 77-83.
[8] 雷力明, 黄旭, 段锐, 曹春晓. 等通道转角挤压工艺研究进展[J]. 材料工程, 2009, 0(5): 76-80.
[9] 甘雪萍. 亚铁氰化钾对以次磷酸钠为还原剂化学镀铜的影响[J]. 材料工程, 2009, 0(4): 39-44.
[10] 丁浩冉, 王树林. 水解氧化锌纳米复合结构光催化降解性能研究[J]. 材料工程, 2008, 0(10): 197-199,203.
[11] 于萍, 王蕾蕾, 慕春玲, 崔巍, 张长桥, 邢文国. Zn-Mg合金镀层的表面形貌及在Na2SO4中的腐蚀产物分析[J]. 材料工程, 2007, 0(11): 62-65.
[12] 王晋春, 程旭东, 李丹虹, 杨章富, 欧阳贵. Ni-W-SiC纳米复合电镀工艺的研究[J]. 材料工程, 2006, 0(3): 25-28.
[13] 房振乾, 胡明, 窦雁巍, 宗杨, 梁继然. 电偶腐蚀法制备多孔硅的研究[J]. 材料工程, 2006, 0(11): 45-48,52.
[14] 郑敏, 张蓬洲. CVD法SiC纤维的表面形貌及断口特征[J]. 材料工程, 1997, 0(3): 30-33.
[15] 袁凯华, 戎霭伦. STM研究光盘材料结构转变前后表面形貌的分形维数[J]. 材料工程, 1994, 0(10): 32-34.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn