This paper presents the development status and tendency of quantum dot sensitized solar cells. Photoanode research progress and its related technologies are analyzed in detail from the three ways of semiconductor thin films, quantum dot co-sensitization and quantum dot doping, deriving from the approach that the conversion efficiency can be improved by photoanode modification for quantum dot sensitized solar cells. According to the key factors which restrict the cell efficiency, the promising future development of quantum dot sensitized solar cells is proposed, for example, optimizing further the compositions and structures of semiconductor thin films for the photoanodes, exploring new quantum dots with broadband absorption and developing high efficient techniques of interface modification.
NI M , LEUNG M K , SUMATHY K . Progress on solar cell research[J]. Renewable Energy Resources, 2004, (2): 9- 11.
3
TIAN J , ZHANG Q , UCHAKER E , et al. Architectured ZnO photoelectrode for high efficiency quantum dot sensitized solar cells[J]. Energy & Environmental Science, 2013, 6 (12): 3542- 3547.
4
NOZIK A J , BEARD M C , LUTHER J M , et al. Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells[J]. Chemical Reviews, 2010, 110 (11): 6873- 6890.
doi: 10.1021/cr900289f
5
NOZIK A J . Nanoscience and nanostructures for photovoltaics and solar fuels[J]. Nano Letters, 2010, 10 (10): 2735- 2741.
6
GORER S , HODES G . Quantum size effects in the study of chemical solution deposition mechanisms of semiconductor films[J]. Journal of Physical Chemistry, 1994, 98 (20): 5338- 5346.
doi: 10.1021/j100071a026
7
SCHALLER R D , AGRANOVICH V M , KLIMOV V I . High-efficiency carrier multiplication through direct photogeneration of multi-excitons via virtual single-exciton states[J]. Nature Physics, 2005, 1 (3): 189- 194.
doi: 10.1038/nphys151
8
DU J , DU Z , HU J S , et al. Zn-Cu-In-Se quantum dot dolar cells with a certified power conversion efficiency of 11.6%[J]. Journal of the American Chemical Society, 2016, 138 (12): 4201- 4209.
doi: 10.1021/jacs.6b00615
9
SUN J , JIANG Y , ZHONG X , et al. Three-dimensional nanostructured electrodes for efficient quantum-dot-sensitized solar cells[J]. Nano Energy, 2017, 32, 130- 156.
doi: 10.1016/j.nanoen.2016.12.022
10
THAMBIDURAI M , MUTHUKUMARASAMY N , ARUL N S , et al. CdS quantum dot-sensitized ZnO nanorod-based photoelectrochemical solar cells[J]. Journal of Nanoparticle Research, 2011, 13 (8): 3267- 3273.
doi: 10.1007/s11051-011-0241-2
11
UNNI G E , DEEPK T G , NAIR A S . Fabrication of CdSe sensitized SnO2 nanofiber quantum dot solar cells[J]. Materials Science in Semiconductor Processing, 2016, 41, 370- 377.
doi: 10.1016/j.mssp.2015.09.016
12
BAI S L , LU W H , LI D Q , et al. Synthesis of mesoporous TiO2 microspheres and their use as scattering layers in quantum dot sensitized solar cells[J]. Acta Physico-Chimica Sinica, 2014, 30 (6): 1107- 1112.
13
ZHANG S , LAN Z , WU J , et al. Preparation of novel TiO2 quantum dot blocking layers at conductive glass/TiO2 interfaces for efficient CdS quantum dot sensitized solar cells[J]. Journal of Alloys and Compounds, 2016, 656, 253- 258.
doi: 10.1016/j.jallcom.2015.09.242
14
ZHANG X , LIN Y , LIN Y , et al. Synthesis of hierarchical nanowires-based TiO2 spheres for their application as the light blocking layers in CdS/CdSe co-sensitized solar cells[J]. Journal of Materials Science:Materials in Electronics, 2015, 26 (2): 693- 699.
doi: 10.1007/s10854-014-2451-8
15
YU L , LI Z , LIU Y , et al. Mn-doped CdS quantum dots sensitized hierarchical TiO2 flower-rod for solar cell application[J]. Applied Surface Science, 2014, 305 (7): 359- 365.
16
KIM S K , RAJ C J , KIM H J . CdS/CdSe quantum dot-sensitized solar cells based on ZnO nanoparticle/nanorod composite electrodes[J]. Electronic Materials Letters, 2014, 10 (6): 1137- 1142.
doi: 10.1007/s13391-014-4144-0
17
SEOL M , KIM H , TAK Y , et al. Novel nanowire array based highly efficient quantum dot sensitized solar cell[J]. Chemical Communications, 2010, 46 (30): 5521- 5523.
doi: 10.1039/c0cc00542h
18
CHEN Y , QIANG T , FU W , et al. Enhanced solar cell efficiency and stability using ZnS passivation layer for CdS quantum-dot sensitized actinomorphic hexagonal columnar ZnO[J]. Electrochimica Acta, 2014, 118 (2): 176- 181.
LIANG Z R , BI Z N , JIN H , et al. Influence of Al2O3 buffer layer on interface charge recombination in CdSe quantum dot-sensitized solar cells[J]. Advances in New and Renewable Energy, 2015, 3 (4): 245- 250.
20
REN Z H , WANG Z , WANG R , et al. Effects of metal oxyhydroxide coatings on photoanode in quantum dot sensitized solar cells[J]. Chemistry of Materials, 2016, 28 (7): 2323- 2330.
doi: 10.1021/acs.chemmater.6b00434
21
WEI H , WANG G , SHI J , et al. Fumed SiO2 modified electrolytes for quantum dot sensitized solar cells with efficiency exceeding 11% and better stability[J]. Journal of Materials Chemistry A, 2016, 4 (37): 14194- 14203.
doi: 10.1039/C6TA04570G
22
GU X , SONG D , ZHAO Y , et al. Preparation, optical properties and solar cell applications of CdS quantum dots synthesized by chemical bath deposition[J]. Journal of Materials Science:Materials in Electronics, 2013, 24 (8): 3009- 3013.
doi: 10.1007/s10854-013-1204-4
23
REDA S M . Enhance efficiency of solar cell using luminescence PbS quantum dots concentrators[J]. Journal of Fluorescence, 2015, 25 (3): 631- 639.
doi: 10.1007/s10895-015-1546-9
24
SUI X , TAO H , LOU X , et al. CdS quantum dots-sensitized TiO2 nanotube arrays for solar cells[J]. Journal of Wuhan University of Technology:Materials Science Edition, 2013, 28 (1): 17- 21.
doi: 10.1007/s11595-013-0632-6
25
LEE Y , LO Y . Highly efficient quantum-dot-sensitized solar cell based on Co-sensitization of CdS/CdSe[J]. Advanced Functional Materials, 2009, 19 (19): 604- 609.
26
JIAO J , ZHOU Z J , ZHOU W H , et al. CdS and PbS quantum dots co-sensitized TiO2 nanorod arrays with improved performance for solar cells application[J]. Materials Science in Semiconductor Processing, 2012, 16 (2): 435- 440.
27
MANJCEEVAN A , BANDARA J . Robust surface passivation of trap sites in PbS q-dots by controlling the thickness of CdS layers in PbS/CdS quantum dot solar cells[J]. Solar Energy Materials & Solar Cells, 2016, 147, 157- 163.
28
JIAO S , WANG J , SHEN Q , et al. Surface engineering of PbS quantum dot sensitized solar cells with a conversion efficiency exceeding 7%[J]. Journal of Materials Chemistry A, 2016, 4 (19): 7214- 7221.
doi: 10.1039/C6TA02465C
29
LI W J , PAN Z X , ZHONG X H . CuInSe2 and CuInSe2-ZnS based high efficiency "green" quantum dot sensitized solar cells[J]. Journal of Materials Chemistry A, 2015, 3, 1649- 1655.
doi: 10.1039/C4TA05134C
30
NING Z , TIAN H , YUAN C , et al. Solar cells sensitized with type-Ⅱ ZnSe-CdS core/shell colloidal quantum dots[J]. Chemical Communications, 2011, 47 (5): 1536- 1538.
doi: 10.1039/C0CC03401K
31
SAHASRABUDHE A , BHATTACHARYYA S . Dual sensitization strategy for high performance core/shell/quasi-shell quantum dot solar cells[J]. Chemistry of Materials, 2015, 27 (13): 4848- 4859.
doi: 10.1021/acs.chemmater.5b01731
32
YANG J , ZHONG X . CdTe based quantum dot sensitized solar cells with efficiency exceeding 7% fabricated from quantum dots prepared in aqueous media[J]. Journal of Materials Chemistry A, 2016, 4 (42): 16553- 16561.
doi: 10.1039/C6TA07399A
33
PAN Z , ZHANG H , CHENG K , et al. Highly efficient inverted type-Ⅰ CdS/CdSe core/shell structure QD-sensitized solar cells[J]. Acs Nano, 2012, 6 (5): 3982- 3991.
doi: 10.1021/nn300278z
34
LEE S H , JUNG C , KIM S W , et al. Synthesis of colloidal InAs/ZnSe quantum dots and their quantum dot sensitized solar cell (QDSSC) application[J]. Optical Materials, 2015, 49, 230- 234.
doi: 10.1016/j.optmat.2015.09.027
35
WANG G , WEI H , LUO Y , et al. A strategy to boost the cell performance of CdSexTe1-x quantum dot sensitized solar cells over 8% by introducing Mn modified CdSe coating layer[J]. Journal of Power Sources, 2016, 302, 266- 273.
doi: 10.1016/j.jpowsour.2015.10.070
36
SANTRA P K , KAMAT P V . Mn-doped quantum dot sensitized solar cells:a strategy to boost efficiency over 5%[J]. Journal of the American Chemical Society, 2012, 134 (5): 2508- 2511.
doi: 10.1021/ja211224s
37
KIM B M , SON M K , KIM S K , et al. Improved performance of CdS/CdSe quantum dot-sensitized solar cells using Mn-doped PbS quantum dots as a catalyst in the counter electrode[J]. Electrochimica Acta, 2014, 117 (4): 92- 98.
38
KIM S K , GOPI C V V M , LEE J C , et al. Enhanced performance of branched TiO2 nanorod based Mn-doped CdS and Mn-doped CdSe quantum dot-sensitized solar cell[J]. Journal of Applied Physics, 2015, 117 (16): 163104.
doi: 10.1063/1.4918913
39
LEE J W , SON D Y , AHN T K , et al. Quantum-dot-sensitized solar cell with unprecedentedly high photocurrent[J]. Scientific Reports, 2013, 3, 1050.
doi: 10.1038/srep01050
40
JEONG M S , SON M K , KIM S K , et al. Cu-doped ZnO nanoporous film for improved performance of CdS/CdSe quantum dot-sensitized solar cells[J]. Thin Solid Films, 2014, 570, 310- 314.
doi: 10.1016/j.tsf.2014.02.106
41
LI L , ZOU X , ZHOU H , et al. Cu-doped-CdS/In-doped-CdS co-sensitized quantum dot solar cells[J]. Journal of Nanomaterials, 2014, 2014 (2): 1- 8.