Please wait a minute...
 
2222材料工程  2017, Vol. 45 Issue (8): 132-138    DOI: 10.11868/j.issn.1001-4381.2016.001002
  综述 本期目录 | 过刊浏览 | 高级检索 |
量子点敏化太阳能电池光阳极的研究进展
李智敏(), 李钊颖, 张茂林, 王媛, 黄云霞
西安电子科技大学 先进材料与纳米科技学院, 西安 710071
Research Progress of Photoanodes for Quantum Dot Sensitized Solar Cells
Zhi-min LI(), Zhao-ying LI, Mao-lin ZHANG, Yuan WANG, Yun-xia HUANG
School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710071, China
全文: PDF(1720 KB)   HTML ( 43 )  
输出: BibTeX | EndNote (RIS)      
摘要 

介绍量子点敏化太阳能电池的发展现状及趋势,针对光阳极改性来提高量子点敏化太阳能电池转化效率的方法,从半导体薄膜、量子点共敏化、量子点掺杂3个方面综合分析光阳极的研究进展和相关技术。根据制约电池效率的主要因素,提出量子点敏化太阳能电池的未来发展趋势,包括继续优化光阳极半导体薄膜的组成及结构、探索新型的宽光谱响应量子点以及发展高效的界面修饰技术等。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李智敏
李钊颖
张茂林
王媛
黄云霞
关键词 太阳能电池量子点敏化光阳极掺杂共敏化    
Abstract

This paper presents the development status and tendency of quantum dot sensitized solar cells. Photoanode research progress and its related technologies are analyzed in detail from the three ways of semiconductor thin films, quantum dot co-sensitization and quantum dot doping, deriving from the approach that the conversion efficiency can be improved by photoanode modification for quantum dot sensitized solar cells. According to the key factors which restrict the cell efficiency, the promising future development of quantum dot sensitized solar cells is proposed, for example, optimizing further the compositions and structures of semiconductor thin films for the photoanodes, exploring new quantum dots with broadband absorption and developing high efficient techniques of interface modification.

Key wordssolar cell    quantum dot sensitization    photoanode    doping    co-sensitization
收稿日期: 2016-08-22      出版日期: 2017-08-10
中图分类号:  TM914.4  
基金资助:陕西省自然科学基础研究计划(2015JQ6252);高等学校博士学科点专项科研基金(20130203120016);宁波市自然科学基金(2015A610037);宁波市自然科学基金(2015A610109);宁波市自然科学基金(2016A610029)
通讯作者: 李智敏     E-mail: lizhmin@163.com
作者简介: 李智敏(1976-), 男, 副教授, 博士, 主要从事新能源材料与器件的研究, 联系地址:陕西省西安市太白南路2号西安电子科技大学(710071), E-mail:lizhmin@163.com
引用本文:   
李智敏, 李钊颖, 张茂林, 王媛, 黄云霞. 量子点敏化太阳能电池光阳极的研究进展[J]. 材料工程, 2017, 45(8): 132-138.
Zhi-min LI, Zhao-ying LI, Mao-lin ZHANG, Yuan WANG, Yun-xia HUANG. Research Progress of Photoanodes for Quantum Dot Sensitized Solar Cells. Journal of Materials Engineering, 2017, 45(8): 132-138.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.001002      或      http://jme.biam.ac.cn/CN/Y2017/V45/I8/132
Fig.1  量子点敏化太阳能电池结构示意图
Fig.2  量子点敏化太阳能电池的工作原理图
Fig.3  不同厚度TiO2量子点阻挡层对QDSSCs电子寿命(a)和电子传输时间(b)的影响[13]
Fig.4  不同金属氧化物表面修饰层对QDSSCs性能的影响[20]
Fig.5  各种量子点敏化TiO2薄膜和TiO2薄膜的紫外-可见吸收光谱图[25]
Fig.6  TiO2/CdS/CdSe共敏化前(a)和共敏化后(b)的导带边缘与能级[25]
Fig.7  Type-Ⅱ型量子点敏化太阳能电池的示意图[30]
1 GRÄTZEL M . Photoelectrochemical cells[J]. Nature, 2001, 414 (6861): 338- 344.
doi: 10.1038/35104607
2 倪萌, LEUNGM K, SUMATHYK. 太阳能电池研究的新进展[J]. 可再生能源, 2004, (2): 9- 11.
2 NI M , LEUNG M K , SUMATHY K . Progress on solar cell research[J]. Renewable Energy Resources, 2004, (2): 9- 11.
3 TIAN J , ZHANG Q , UCHAKER E , et al. Architectured ZnO photoelectrode for high efficiency quantum dot sensitized solar cells[J]. Energy & Environmental Science, 2013, 6 (12): 3542- 3547.
4 NOZIK A J , BEARD M C , LUTHER J M , et al. Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells[J]. Chemical Reviews, 2010, 110 (11): 6873- 6890.
doi: 10.1021/cr900289f
5 NOZIK A J . Nanoscience and nanostructures for photovoltaics and solar fuels[J]. Nano Letters, 2010, 10 (10): 2735- 2741.
6 GORER S , HODES G . Quantum size effects in the study of chemical solution deposition mechanisms of semiconductor films[J]. Journal of Physical Chemistry, 1994, 98 (20): 5338- 5346.
doi: 10.1021/j100071a026
7 SCHALLER R D , AGRANOVICH V M , KLIMOV V I . High-efficiency carrier multiplication through direct photogeneration of multi-excitons via virtual single-exciton states[J]. Nature Physics, 2005, 1 (3): 189- 194.
doi: 10.1038/nphys151
8 DU J , DU Z , HU J S , et al. Zn-Cu-In-Se quantum dot dolar cells with a certified power conversion efficiency of 11.6%[J]. Journal of the American Chemical Society, 2016, 138 (12): 4201- 4209.
doi: 10.1021/jacs.6b00615
9 SUN J , JIANG Y , ZHONG X , et al. Three-dimensional nanostructured electrodes for efficient quantum-dot-sensitized solar cells[J]. Nano Energy, 2017, 32, 130- 156.
doi: 10.1016/j.nanoen.2016.12.022
10 THAMBIDURAI M , MUTHUKUMARASAMY N , ARUL N S , et al. CdS quantum dot-sensitized ZnO nanorod-based photoelectrochemical solar cells[J]. Journal of Nanoparticle Research, 2011, 13 (8): 3267- 3273.
doi: 10.1007/s11051-011-0241-2
11 UNNI G E , DEEPK T G , NAIR A S . Fabrication of CdSe sensitized SnO2 nanofiber quantum dot solar cells[J]. Materials Science in Semiconductor Processing, 2016, 41, 370- 377.
doi: 10.1016/j.mssp.2015.09.016
12 BAI S L , LU W H , LI D Q , et al. Synthesis of mesoporous TiO2 microspheres and their use as scattering layers in quantum dot sensitized solar cells[J]. Acta Physico-Chimica Sinica, 2014, 30 (6): 1107- 1112.
13 ZHANG S , LAN Z , WU J , et al. Preparation of novel TiO2 quantum dot blocking layers at conductive glass/TiO2 interfaces for efficient CdS quantum dot sensitized solar cells[J]. Journal of Alloys and Compounds, 2016, 656, 253- 258.
doi: 10.1016/j.jallcom.2015.09.242
14 ZHANG X , LIN Y , LIN Y , et al. Synthesis of hierarchical nanowires-based TiO2 spheres for their application as the light blocking layers in CdS/CdSe co-sensitized solar cells[J]. Journal of Materials Science:Materials in Electronics, 2015, 26 (2): 693- 699.
doi: 10.1007/s10854-014-2451-8
15 YU L , LI Z , LIU Y , et al. Mn-doped CdS quantum dots sensitized hierarchical TiO2 flower-rod for solar cell application[J]. Applied Surface Science, 2014, 305 (7): 359- 365.
16 KIM S K , RAJ C J , KIM H J . CdS/CdSe quantum dot-sensitized solar cells based on ZnO nanoparticle/nanorod composite electrodes[J]. Electronic Materials Letters, 2014, 10 (6): 1137- 1142.
doi: 10.1007/s13391-014-4144-0
17 SEOL M , KIM H , TAK Y , et al. Novel nanowire array based highly efficient quantum dot sensitized solar cell[J]. Chemical Communications, 2010, 46 (30): 5521- 5523.
doi: 10.1039/c0cc00542h
18 CHEN Y , QIANG T , FU W , et al. Enhanced solar cell efficiency and stability using ZnS passivation layer for CdS quantum-dot sensitized actinomorphic hexagonal columnar ZnO[J]. Electrochimica Acta, 2014, 118 (2): 176- 181.
19 梁柱荣, 毕卓能, 靳虎, 等. Al2O3修饰层对抑制CdSe量子点敏化太阳电池界面电子复合的研究[J]. 新能源进展, 2015, 3 (4): 245- 250.
19 LIANG Z R , BI Z N , JIN H , et al. Influence of Al2O3 buffer layer on interface charge recombination in CdSe quantum dot-sensitized solar cells[J]. Advances in New and Renewable Energy, 2015, 3 (4): 245- 250.
20 REN Z H , WANG Z , WANG R , et al. Effects of metal oxyhydroxide coatings on photoanode in quantum dot sensitized solar cells[J]. Chemistry of Materials, 2016, 28 (7): 2323- 2330.
doi: 10.1021/acs.chemmater.6b00434
21 WEI H , WANG G , SHI J , et al. Fumed SiO2 modified electrolytes for quantum dot sensitized solar cells with efficiency exceeding 11% and better stability[J]. Journal of Materials Chemistry A, 2016, 4 (37): 14194- 14203.
doi: 10.1039/C6TA04570G
22 GU X , SONG D , ZHAO Y , et al. Preparation, optical properties and solar cell applications of CdS quantum dots synthesized by chemical bath deposition[J]. Journal of Materials Science:Materials in Electronics, 2013, 24 (8): 3009- 3013.
doi: 10.1007/s10854-013-1204-4
23 REDA S M . Enhance efficiency of solar cell using luminescence PbS quantum dots concentrators[J]. Journal of Fluorescence, 2015, 25 (3): 631- 639.
doi: 10.1007/s10895-015-1546-9
24 SUI X , TAO H , LOU X , et al. CdS quantum dots-sensitized TiO2 nanotube arrays for solar cells[J]. Journal of Wuhan University of Technology:Materials Science Edition, 2013, 28 (1): 17- 21.
doi: 10.1007/s11595-013-0632-6
25 LEE Y , LO Y . Highly efficient quantum-dot-sensitized solar cell based on Co-sensitization of CdS/CdSe[J]. Advanced Functional Materials, 2009, 19 (19): 604- 609.
26 JIAO J , ZHOU Z J , ZHOU W H , et al. CdS and PbS quantum dots co-sensitized TiO2 nanorod arrays with improved performance for solar cells application[J]. Materials Science in Semiconductor Processing, 2012, 16 (2): 435- 440.
27 MANJCEEVAN A , BANDARA J . Robust surface passivation of trap sites in PbS q-dots by controlling the thickness of CdS layers in PbS/CdS quantum dot solar cells[J]. Solar Energy Materials & Solar Cells, 2016, 147, 157- 163.
28 JIAO S , WANG J , SHEN Q , et al. Surface engineering of PbS quantum dot sensitized solar cells with a conversion efficiency exceeding 7%[J]. Journal of Materials Chemistry A, 2016, 4 (19): 7214- 7221.
doi: 10.1039/C6TA02465C
29 LI W J , PAN Z X , ZHONG X H . CuInSe2 and CuInSe2-ZnS based high efficiency "green" quantum dot sensitized solar cells[J]. Journal of Materials Chemistry A, 2015, 3, 1649- 1655.
doi: 10.1039/C4TA05134C
30 NING Z , TIAN H , YUAN C , et al. Solar cells sensitized with type-Ⅱ ZnSe-CdS core/shell colloidal quantum dots[J]. Chemical Communications, 2011, 47 (5): 1536- 1538.
doi: 10.1039/C0CC03401K
31 SAHASRABUDHE A , BHATTACHARYYA S . Dual sensitization strategy for high performance core/shell/quasi-shell quantum dot solar cells[J]. Chemistry of Materials, 2015, 27 (13): 4848- 4859.
doi: 10.1021/acs.chemmater.5b01731
32 YANG J , ZHONG X . CdTe based quantum dot sensitized solar cells with efficiency exceeding 7% fabricated from quantum dots prepared in aqueous media[J]. Journal of Materials Chemistry A, 2016, 4 (42): 16553- 16561.
doi: 10.1039/C6TA07399A
33 PAN Z , ZHANG H , CHENG K , et al. Highly efficient inverted type-Ⅰ CdS/CdSe core/shell structure QD-sensitized solar cells[J]. Acs Nano, 2012, 6 (5): 3982- 3991.
doi: 10.1021/nn300278z
34 LEE S H , JUNG C , KIM S W , et al. Synthesis of colloidal InAs/ZnSe quantum dots and their quantum dot sensitized solar cell (QDSSC) application[J]. Optical Materials, 2015, 49, 230- 234.
doi: 10.1016/j.optmat.2015.09.027
35 WANG G , WEI H , LUO Y , et al. A strategy to boost the cell performance of CdSexTe1-x quantum dot sensitized solar cells over 8% by introducing Mn modified CdSe coating layer[J]. Journal of Power Sources, 2016, 302, 266- 273.
doi: 10.1016/j.jpowsour.2015.10.070
36 SANTRA P K , KAMAT P V . Mn-doped quantum dot sensitized solar cells:a strategy to boost efficiency over 5%[J]. Journal of the American Chemical Society, 2012, 134 (5): 2508- 2511.
doi: 10.1021/ja211224s
37 KIM B M , SON M K , KIM S K , et al. Improved performance of CdS/CdSe quantum dot-sensitized solar cells using Mn-doped PbS quantum dots as a catalyst in the counter electrode[J]. Electrochimica Acta, 2014, 117 (4): 92- 98.
38 KIM S K , GOPI C V V M , LEE J C , et al. Enhanced performance of branched TiO2 nanorod based Mn-doped CdS and Mn-doped CdSe quantum dot-sensitized solar cell[J]. Journal of Applied Physics, 2015, 117 (16): 163104.
doi: 10.1063/1.4918913
39 LEE J W , SON D Y , AHN T K , et al. Quantum-dot-sensitized solar cell with unprecedentedly high photocurrent[J]. Scientific Reports, 2013, 3, 1050.
doi: 10.1038/srep01050
40 JEONG M S , SON M K , KIM S K , et al. Cu-doped ZnO nanoporous film for improved performance of CdS/CdSe quantum dot-sensitized solar cells[J]. Thin Solid Films, 2014, 570, 310- 314.
doi: 10.1016/j.tsf.2014.02.106
41 LI L , ZOU X , ZHOU H , et al. Cu-doped-CdS/In-doped-CdS co-sensitized quantum dot solar cells[J]. Journal of Nanomaterials, 2014, 2014 (2): 1- 8.
[1] 杨建国, 沈伟健, 李华鑫, 贺艳明, 闾川阳, 郑文健, 马英鹤, 魏连峰. 氮掺杂导电碳化硅陶瓷研究进展[J]. 材料工程, 2022, 50(9): 18-31.
[2] 刘源, 赵华, 李会鹏, 蔡天凤, 王禹程. 碳氯共掺杂介孔g-C3N4的气泡模板法制备及光催化性能[J]. 材料工程, 2022, 50(9): 70-77.
[3] 杜宗波, 时双强, 陈宇滨, 褚海荣, 杨程. 介电型石墨烯吸波复合材料研究进展[J]. 材料工程, 2022, 50(4): 74-84.
[4] 姜莹, 申心畅, 郭丽敏, 毕科, 王晓慧, 李龙土. 陶瓷电介质储能材料研究进展[J]. 材料工程, 2022, 50(4): 96-103.
[5] 任美娟, 王淼, 吴芳辉, 贾虎, 叶明富, 文国强. 氮掺杂多孔碳负载铜钴纳米复合材料的制备及其电催化性能[J]. 材料工程, 2022, 50(4): 104-111.
[6] 李茂辉, 杨智, 潘廷仙, 同鑫, 胡长刚, 田娟. 铁氮掺杂活性炭载体增强碳载铂基催化剂氧还原反应稳定性[J]. 材料工程, 2022, 50(4): 132-138.
[7] 阚侃, 王珏, 付东, 郑明明, 张晓臣. 氮掺杂碳纤维包覆石墨烯纳米片的构建及电容特性[J]. 材料工程, 2022, 50(2): 94-102.
[8] 吴冰, 刘磊, 王献志, 肖潇, 杨豹, 赵锦涛, 古成前, 马雷. Y3+掺杂Li4Ti5O12负极材料的电荷输运特性及电化学性能研究[J]. 材料工程, 2022, 50(10): 102-110.
[9] 张少威, 蒲秀好, 万艳红, 祝康, 夏长荣. 掺杂对Sr2Fe1.5Mo0.5O6-δ阳极材料电化学性能影响研究进展[J]. 材料工程, 2021, 49(9): 1-13.
[10] 辜宁霞, 荆婉如, 宁磊, 吕芳洁, 宋立新, 熊杰. 钙钛矿太阳能电池用Ag/ZrO2/C柔性纳米纤维膜电极[J]. 材料工程, 2021, 49(9): 79-86.
[11] 张盼盼, 黄惠, 何亚鹏, 李宵波, 郭忠诚. 锂离子电池富锂锰正极材料的最新进展[J]. 材料工程, 2021, 49(3): 48-58.
[12] 张勇, 翟光美, 郑露露, 高领伟, 陈青, 任锦涛, 郁军, 许并社. 籽晶层对氧化锡纳米棒生长质量及其钙钛矿太阳能电池性能的影响[J]. 材料工程, 2021, 49(10): 55-62.
[13] 陈丹玲, 黄志强, 何新华. Ta掺杂Na0.5Bi4.5Ti4O15陶瓷的显微结构和电性能[J]. 材料工程, 2020, 48(9): 93-99.
[14] 阚侃, 王珏, 付东, 宋美慧, 张伟君, 张晓臣. 氮/氧共掺杂多孔碳纳米带的可控制备及储能特性[J]. 材料工程, 2020, 48(8): 101-109.
[15] 李忠裕, 李云同, 吴雯倩, 刘玲, 彭超华, 袁丛辉, 戴李宗. 磷掺杂中空碳球的制备及其电容性能[J]. 材料工程, 2020, 48(3): 105-111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn