Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (3): 91-97    DOI: 10.11868/j.issn.1001-4381.2016.001024
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
Zn-Al-Mg-RE涂层在含SRB海水中的耐腐蚀性与机理
龙伟漾, 吴玉萍, 高文文, 洪晟
河海大学 力学与材料学院, 南京 211100
Corrosion Resistance Behavior and Mechanism of Zn-Al-Mg-RE Coating in Seawater with SRB
LONG Wei-yang, WU Yu-ping, GAO Wen-wen, HONG Sheng
College of Mechanics and Materials, Hohai University, Nanjing 211100, China
全文: PDF(3266 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 利用高速电弧喷涂技术在Q235钢基体上制备Zn-Al-Mg-RE涂层,采用环氧改性有机硅树脂对涂层进行封孔,在含硫酸盐还原菌(SRB)海水中浸泡后,采用EIS,PC等方法研究Zn-Al-Mg-RE涂层在SRB一个生长周期内的腐蚀行为,并对涂层进行表面微观形貌和化学成分分析,探讨其腐蚀机理。结果表明:封孔和未封孔的Zn-Al-Mg-RE涂层在含SRB海水中的腐蚀速率均呈先增大后减小的趋势;封孔后Zn-Al-Mg-RE涂层的耐腐蚀性得到较大提高。经过浸泡后的Zn-Al-Mg-RE涂层表面覆盖了一层微生物和腐蚀产物组成的混合物层和钝化膜层,避免了涂层进一步遭受损坏。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
龙伟漾
吴玉萍
高文文
洪晟
关键词 硫酸盐还原菌电弧喷涂环氧改性有机硅树脂封孔腐蚀Zn-Al-Mg-RE涂层    
Abstract:The corrosion behavior of Zn-Al-Mg-RE sealed and unsealed coatings fabricated by high-velocity arc spraying on Q235 steel was studied in seawater with sulfate-reducing bacteria (SRB) using electrochemical impedance spectroscopy(EIS), polarization curve(PC), scanning electron microscopy (SEM) and energy dispersive spectroscopy(EDS). The results show that the corrosion rate of unsealed and sealed Zn-Al-Mg-RE coatings first increases and then decreases; the corrosion resistance of Zn-Al-Mg-RE coating apparently improves by the sealing treatment. After immersion, the two coatings surface is covered by a passivation film layer of microorganism and corrosion products, which avoids the coating from being further damaged.
Key wordssulfate-reducing bacteria    arc spraying    epoxy modified organic silicone resin sealing    corrosion    Zn-Al-Mg-RE coating
收稿日期: 2016-08-29      出版日期: 2018-03-20
中图分类号:  TG174.44  
基金资助: 
通讯作者: 吴玉萍(1964-),女,教授,博士,博士生导师,从事金属材料及表面工程方面的研究工作,联系地址:江苏省南京市江宁区佛城西路8号河海大学江宁校区(211100),E-mail:wuyphhu@163.com     E-mail: wuyphhu@163.com
引用本文:   
龙伟漾, 吴玉萍, 高文文, 洪晟. Zn-Al-Mg-RE涂层在含SRB海水中的耐腐蚀性与机理[J]. 材料工程, 2018, 46(3): 91-97.
LONG Wei-yang, WU Yu-ping, GAO Wen-wen, HONG Sheng. Corrosion Resistance Behavior and Mechanism of Zn-Al-Mg-RE Coating in Seawater with SRB. Journal of Materials Engineering, 2018, 46(3): 91-97.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.001024      或      http://jme.biam.ac.cn/CN/Y2018/V46/I3/91
[1] ZHAO X,DUAN J,HOU B,et al. Corrosion of mild steel in sea mud containing sulphate reducing bacteria[J]. Canadian Metallurgical Quarterly,2014,53(4):450-456.
[2] LITTLE B J,WAGNER P,MANSFELD F B. Microbiologically influenced corrosion[J]. Engineering Materials and Processes, 2007,29(3):218-240.
[3] LITTLE B J,WAGNER P,MANSFELD F B. Microbiologically influenced corrosion of metals and alloys[J]. International Materials Reviews,1991,36(1):253-272.
[4] VENZLAFF H,ENNING D,SRINIVASAN J,et al. Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria[J]. Corrosion Science,2013,66:88-96.
[5] STIPANICEV M,TURCU F,ESNAULT L,et al. Corrosion behavior of carbon steel in presence of sulfate-reducing bacteria in seawater environment[J]. Electrochimica Acta,2013,113:390-406.
[6] 段继周. 海水和海泥环境中厌氧细菌对海洋用钢微生物腐蚀行为的影响[D]. 青岛:中国科学院海洋研究所,2003. DUAN J Z. Microbiologically influenced corrosion of steels in sea water and seamud containing sulfate-reducing bacterial[D].Qingdao:Institute of Oceanology,Chinese Academy of Sciences,2003.
[7] BARTON L L. Sulfate-reducing bacteria[M]. New York:Springer Publishing Company,1995:1011-1015.
[8] 刘靖,侯宝利,郑家燊,等. 硫酸盐还原菌腐蚀研究进展[J]. 材料保护,2001,34(8):8-11. LIU J,HOU B L,ZHENG J S,et al. The corrosion research progress of sulfate reducing bacteria[J]. Materials Protection,2001,34(8):8-11.
[9] DUAN J Z,HOU B R,YU Z G. Characteristics of sulfide corrosion products on 316L stainless steel surfaces in the presence of sulfate-reducing bacteria[J].Materials Science and Engineering:C,2006,26(4):624-629.
[10] JIANG Q,MIAO Q,LIANG W,et al. Corrosion behavior of arc sprayed Al-Zn-Si-RE coatings on mild steel in 3.5wt% NaCl solution[J]. Electrochimica Acta,2014,115:644-656.
[11] XU B S,MA S N,WANG J. Application of electric arc spraying technique to enhance corrosion resistance of steel structures on ships[J]. Surface Engineering,1995,11(1):38-40.
[12] 高文文,吴玉萍,段继周,等. 电弧喷涂Zn和Al涂层在含SRB海水中的腐蚀行为与机理[J]. 材料热处理学报,2014,35(3):193-199. GAO W W,WU Y P,DUAN J Z,et al. Corrosion behavior and mechanism of arc-sprayed Zn and Al coatings in seawater with SRB[J]. Transactions of Materials and Heat Treatment,2014,35(3):193-199.
[13] HONG S,WU Y P,GAO W W,et al. Corrosion behavior of arc-sprayed Zn-Al coating in the presence of sulfate-reducing bacteria in seawater[J].Journal of Materials Engineering and Performance,2015,24(11):4449-4455.
[14] 陈永雄,徐滨士,许一,等. 热喷涂Zn-Al合金防腐涂层技术的研究进展[J]. 材料导报,2006,20(4):70-73. CHEN Y X,XU B S,XU Y,et al. The development of thermal spraying Zn-Al alloy anticorrosive coating[J].Materials Review,2006,20(4):70-73.
[15] 陈永雄,魏世丞,梁秀兵,等. Zn-Al-Mg-RE高速电弧喷涂工艺过程的氧化行为分析[J].装甲兵工程学院学报,2012,26(5):95-99. CHEN Y X,WEI S C,LIANG X B,et al. Analysis of oxidation behavior of Zn-Al-Mg-RE coating during the high velocity arc spraying process[J]. Journal of Armored Force Engineering Institute,2012,26(5):95-99.
[16] LIU Y,XU B S,ZHU Z X,et al. Microstructure and anti-corrosion properties of thermal sprayed Zn-Al-Mg-RE coating[J]. Heat Treatment of Metals,2008,33(11):52-54.
[17] 黄桂桥,郭鹏,邢辉斌. 微生物对碳钢海水腐蚀影响的电化学研究[J].腐蚀与防护,2011,32(5):331-334. HUANG G Q,GUO P,XING H B. Electrochemical study on microbiologically influenced corrosion of carbon steel in seawater[J]. Corrosion & Protection,2011,32(5):331-334.
[18] 付东兴,徐滨士,张晓囡,等. 一种用于研究腐蚀环境中Zn-Al-Mg-RE涂层自封闭特性的新方法[J]. 腐蚀科学与防护技术,2010,22(5):389-391. FU D X,XU B S,ZHANG X N,et al. A new method for characterization of self-repairing ability of Zn-Al-Mg-RE coating in corrosive environment[J]. Corrosion Science and Protection Technology,2010,22(5):389-391.
[19] LIU Y,XU B S,ZHU Z X,et al. New pattern Zn-Al-Mg-RE coating technics for steel structure sustainable design[J]. Journal of Central South University of Technology,2005,12(2):211-214.
[20] 赵曦,贾瑞灵,周伟光,等. 稀土对AZ91镁合金干/湿循环腐蚀产物及阻抗行为的影响[J]. 材料工程,2017,45(4):41-50. ZHAO X,JIA R L,ZHOU W G,et al.Effect of rare earth on drying/wet cycling corrosion products and impedance behaviors of AZ91 magnesium alloy[J]. Journal of Materials Engineering,2017,45(4):41-50.
[21] 郎序菲,邱丽娜,弓爱君,等. 微生物腐蚀及防腐技术的研究现状[J]. 全面腐蚀控制,2009(10):20-24. LANG X F,QIU L N,GONG A J,et al. Review on microbiologically influenced corrosion and antisepsis techniques[J]. Total Corrosion Control,2009(10):20-24.
[1] 袁晓静, 查柏林, 陈小虎, 禹志航, 王新军. WC-10Co-4Cr涂层在不同温度酸与NaCl溶液中的耐腐蚀性能[J]. 材料工程, 2019, 47(5): 63-71.
[2] 王玉洁, 张鹏, 王选, 杜云慧, 王胜林, 张伟一, 鹿红梅. 氧气流量对LY12铝合金微弧氧化膜致密性的影响[J]. 材料工程, 2019, 47(5): 86-92.
[3] 常海, 郭雪刚, 文磊, 金莹. SiC纳米颗粒对TC4钛合金微弧氧化涂层组织结构及耐蚀性能的影响[J]. 材料工程, 2019, 47(3): 109-115.
[4] 王赟, 胡军, 王甜甜, 郑茂盛. 曼尼希碱/钨酸钠复配对N80钢缓蚀的协同作用[J]. 材料工程, 2019, 47(2): 122-128.
[5] 陈跃良, 王安东, 卞贵学, 张勇. CF8611/AC531复合材料性能及与7B04铝合金电偶腐蚀的电化学研究[J]. 材料工程, 2019, 47(1): 97-105.
[6] 马慧媛, 刘慧丛, 石文静, 施丽铭, 李卫平, 朱立群. 应力载荷作用下5A06铝合金薄板材料在盐水中腐蚀行为[J]. 材料工程, 2018, 46(9): 152-159.
[7] 万闪, 姜丹, 蔡光义, 廖圣智, 董泽华. 铝合金超疏水转化膜的制备与性能[J]. 材料工程, 2018, 46(9): 144-151.
[8] 张莹, 高博, 王磊, 宋秀. 一种新型钴基高温合金在900℃熔融NaCl中的热腐蚀行为[J]. 材料工程, 2018, 46(8): 134-139.
[9] 邓仲华, 刘其斌, 徐鹏, 姚志浩. 方形光斑激光冲击强化金属表面的耐腐蚀性能及机理[J]. 材料工程, 2018, 46(8): 140-147.
[10] 王匀, 陈英箭, 许桢英, 唐书浩. 基体表面粗糙度对热丝TIG堆焊Inconel625组织和耐腐蚀性能的影响[J]. 材料工程, 2018, 46(7): 94-99.
[11] 李晓龙, 张杰, 张鑫, 汪江伟, 徐会会, 段继周, 侯保荣. 海洋污损生物的附着对Q235碳钢表面阴极保护钙质沉积层形成的影响[J]. 材料工程, 2018, 46(6): 88-94.
[12] 李晶, 赵世才, 杜锋, 范凤玉, 潘理达, 于化东. 激光构筑槽棱与网格状结构超疏水耐腐蚀表面研究[J]. 材料工程, 2018, 46(5): 86-91.
[13] 罗晓民, 魏梦媛, 曹敏. 耐腐蚀超疏水铜网的制备及其在油水分离中的应用[J]. 材料工程, 2018, 46(5): 92-98.
[14] 杜娟, 田辉, 陈亚军, 王付胜, 陈翘楚, 褚弘. 7A04铝合金应力腐蚀敏感性及裂纹萌生与扩展行为[J]. 材料工程, 2018, 46(4): 74-81.
[15] 吴伟, 郝文魁, 李晓刚, 钟平, 董超芳, 刘智勇, 肖葵. 高Cl-环境对M152和17-4PH高强钢应力腐蚀开裂行为的影响[J]. 材料工程, 2018, 46(2): 105-114.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn