Please wait a minute...
材料工程  2018, Vol. 46 Issue (6): 11-18    DOI: 10.11868/j.issn.1001-4381.2016.001027
  综述 本期目录 | 过刊浏览 | 高级检索 |
曾文1,2, 栾佰峰1, 刘娜1
1. 重庆大学 材料科学与工程学院, 重庆 400044;
2. 重庆科技学院 冶金与材料工程学院, 重庆 401331
Hydride Phases and Hydride Orientation in Zirconium Alloys
ZENG Wen1,2, LUAN Bai-feng1, LIU Na1
1. College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China;
2. College of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
全文: PDF(921 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 作为核反应堆的燃料包壳,锆合金在水侧腐蚀的同时还因吸氢而产生氢化物,从而导致基体脆化和氢致延迟开裂等问题。本文综述了锆合金中的氢化物相和氢化物取向。重点讨论了γ相和δ相与锆及锆合金的晶体学取向关系,分析了织构、加工Q值、应力和退火温度对氢化物取向的影响,以及氢化物取向对锆合金力学性能的影响。同时概括了目前研究中存在的氢化物取向机理不明确、氢化物应力再取向机理存在争议等问题,指出了影响锆合金中氢化物取向的因素、氢化物与锆基体的晶体学取向关系、氢化物应力再取向机理等研究尚需进一步完善,此外,对于国产新型高性能锆合金氢化物的研究也有待深入开展。
E-mail Alert
关键词 锆合金氢化物氢化物取向晶体学取向关系    
Abstract:As a fuel cladding materials of the nuclear reactor, water side corrosion and hydrogen absorption generated in zirconium alloys which due to the embrittlement of matrix and hydrogen induced delayed cracking. The hydride phases, hydride orientation and the effect of hydride orientation on mechanical properties of zirconium alloys were reviewed. The crystallographic orientation relationship between α-Zr matrix and hydrides(γ and δ), the effect of texture, Q value, stress and annealing temperature on hydride orientation, the effect of hydride orientation on mechanical properties of zirconium alloy were primarily discussed. Meanwhile, the current problems were analyzed, for example, the mechanism of hydride orientation was not clear, the mechanism of hydride stress reorientation was controversial, etc. It was pointed out that the hydride orientation, crystallographic orientation relationship between hydrides and Zr matrix, hydride stress reorientation in Zr alloys require further investigation. Furthermore, the research on the hydrides in domestic new type high performance Zr alloy needs to be carried out.
Key wordszirconium alloy    hydride    hydride orientation    crystallographic orientation relationship
收稿日期: 2016-08-29      出版日期: 2018-06-14
中图分类号:  TG146.4+14  
通讯作者: 栾佰峰(1973-),男,教授,博导,从事核材料微观组织及织构控制方面的研究工作,联系地址:重庆市沙坪坝区沙正街174号重庆大学A区(400044),     E-mail:
曾文, 栾佰峰, 刘娜. 锆合金中的氢化物相及氢化物取向[J]. 材料工程, 2018, 46(6): 11-18.
ZENG Wen, LUAN Bai-feng, LIU Na. Hydride Phases and Hydride Orientation in Zirconium Alloys. Journal of Materials Engineering, 2018, 46(6): 11-18.
链接本文:      或
[1] ZUZEK E,ABRIATA J,SAN-MARTIN A,et al. The H-Zr (hydrogen-zirconium) system[J]. Bulletin of Alloy Phase Diagrams,1990,11(4):385-395.
[2] 姚美意,周邦新,李强,等. 第二相对Zr-4合金在400℃过热蒸汽中腐蚀吸氢行为的影响[J]. 稀有金属材料与工程,2007(11):1915-1919. YAO M Y,ZHOU B X,LI Q,et al. Effect of the second phase particles on the hydrogen absorption of Zircaloy-4 alloy corroded in super-heated steam of 400℃[J]. Rare Metal Materials and Engineering,2007(11):1915-1919.
[3] 石明华,李中奎,张建军,等. 热加工对NZ2锆合金在400℃过热水蒸气中吸氢行为的影响[J]. 稀有金属材料与工程,2011,40(10):1855-1858. SHI M H,LI Z K,ZHANG J J,et al. Effects of hot rolling on hydrogen absorption behavior of NZ2 zirconium alloy in 400℃ super-heated steam[J]. Rare Metal Materials and Engineering,2011,40(10):1855-1858.
[4] ITO M, KO K, MUTA H, et al. Effect of Nb addition on the terminal solid solubility of hydrogen for Zr and Zircaloy-4[J]. Journal of Alloys and Compounds,2007,446:451-454.
[5] SIMPSON L,CANN C. Fracture toughness of zirconium hydride and its influence on the crack resistance of zirconium alloys[J]. Journal of Nuclear Materials,1979,87(2):303-316.
[6] QIN W,SZPUNAR J A,KOZINSKI J. Hydride-induced degradation of zirconium alloys:a criterion for complete ductile-to-brittle transition and its dependence on microstructure[J]. Proceedings of the Royal Society A:Mathematical Physical and Engineering Sciences,2015,471(2182):20150192.
[7] SIMPSON C J,ELLS C E. Delayed hydrogen embrittlement in Zr-2.5wt%Nb[J]. Journal of Nuclear Materials,1974,52(2):289-295.
[8] PULS M P. The effect of hydrogen and hydrides on the integrity of zirconium alloy components:delayed hydride cracking[M]. Berlin:Springer Science and Business Media,2012.
[9] BAILEY J. Electron microscope observations on the precipitation of zirconium hydride in zirconium[J]. Acta Metallurgica,1963,11(4):267-280.
[10] CARPENTER G. The precipitation of γ-zirconium hydride in zirconium[J]. Acta Metallurgica,1978,26(8):1225-1235.
[11] ZHAO Z,BLAT-YRIEIX M,MORNIROLI J P,et al. Characterization of zirconium hydrides and phase field approach to a mesoscopic-scale modeling of their precipitation[J]. Journal of ASTM International,2008,5(3):101161-101180.
[12] ZHANG Y,BAI X M,YU J,et al. Homogeneous hydride formation path in α-Zr:molecular dynamics simulations with the charge-optimized many-body potential[J]. Acta Materialia,2016,111(1):357-365.
[13] MISHRA S,SIVARAMAKRIHNAN K,ASUNDI M. Formation of the gamma phase by a peritectoid reaction in the zirconium-hydrogen system[J]. Journal of Nuclear Materials,1972,45(3):235-244.
[14] ROOT J,SMALL W,KHATAMIAN D,et al. Kinetics of the δ to γ zirconium hydride transformation in Zr-2.5Nb[J]. Acta Materialia,2003,51(7):2041-2053.
[15] STEUWER A,SANTISTEBAN J,PREUSS M,et al. Evidence of stress-induced hydrogen ordering in zirconium hydrides[J]. Acta Materialia,2009,57(1):145-152.
[16] BARRACLOUGH K,BEEVERS C. The nature of the γ-phase in zirconium-hydrogen alloys[J]. Journal of the Less Common Metals,1974,35(1):177-179.
[17] TULK E,KERR M,DAYMOND M. Study on the effects of matrix yield strength on hydride phase stability in zircaloy-2 and Zr 2.5wt%Nb[J]. Journal of Nuclear Materials,2012,425(1):93-104.
[18] LANZANI L,RUCH M. Comments on the stability of zirconium hydride phases in zircaloy[J]. Journal of Nuclear Materials,2004,324(2):165-176.
[19] BARROW A,KORINEK A,DAYMOND M. Evaluating zirconium-zirconium hydride interfacial strains by nano-beam electron diffraction[J]. Journal of Nuclear Materials,2013,432(1):366-370.
[20] BESSON R,CANDELA R. Ab initio thermodynamics of fcc H-Zr and formation of hydrides[J]. Computational Materials Science,2016,114:254-263.
[21] NATH B,LORIMER G,RIDLEY N. Effect of hydrogen concentration and cooling rate on hydride precipitation in α-zirconium[J]. Journal of Nuclear Materials,1975,58(2):153-162.
[22] BRADBROOK J,LORIMER G,RIDLEY N. The precipitation of zirconium hydride in zirconium and zircaloy-2[J]. Journal of Nuclear Materials,1972,42(2):142-160.
[23] NATH B,LORIMER G,RIDLEY N. The relationship between gamma and delta hydrides in zirconium-hydrogen alloys of low hydrogen concentration[J]. Journal of Nuclear Materials,1974,49(3):262-280.
[24] WANG Z,STEUWER A,LIU N,et al. Observations of temperature stability of γ-zirconium hydride by high-resolution neutron powder diffraction[J]. Journal of Alloys and Compounds,2016,661(15):55-61.
[25] CANN C,PULS M,SEXTON E,et al. The effect of metallurgical factors on hydride phases in zirconium[J]. Journal of Nuclear Materials,1984,126(3):197-205.
[26] BECK R L. Zirconium-hydrogen phase system[J]. Am Soc Metals Trans Quart,1962,55.
[27] WHITWHAM D,HUBER M A,HÉRENGUEL J. Transformation pseudo-martensitique dans l'hydrure de zirconium[J]. Acta Metallurgica,1959,7(2):65-68.
[28] BARRACLOUGH K,BEEVERS C. Some observations on the phase transformations in zirconium hydrides[J]. Journal of Nuclear Materials,1970,34(2):125-134.
[29] RUNDLE R,SHULL C,WOLLAN E O. The crystal structure of thorium and zirconium dihydrides by X-ray and neutron diffraction[J]. Acta Crystallographica,1952,5(1):22-26.
[30] SIDHU S S,SATYA M N S,CAMPOS F P,et al. Neutron and X-ray diffraction studies of nonstoichiometric metal hydrides[J]. Advance in Chemistry,1963,39(8):87-98.
[31] KUMAR N K,SZPUNAR J A,HE Z. Preferential precipitation of hydrides in textured zircaloy-4 sheets[J]. Journal of Nuclear Materials,2010,403(1):101-107.
[32] QIN W,SZPUNAR J A,KOZINSKI J. Hydride-induced degradation of hoop ductility in textured zirconium-alloy tubes:a theoretical analysis[J]. Acta Materialia,2012,60(12):4845-4855.
[33] QIN W,KUMAR N K,SZPUNAR J,et al. Intergranular δ-hydride nucleation and orientation in zirconium alloys[J]. Acta Materialia,2011,59(18):7010-7021.
[34] WEATHERLY G. The precipitation of γ-hydride plates in zirconium[J]. Acta Metallurgica,1981,29(3):501-512.
[35] NEOGY S,SRIVASTAVA D,TEWARI R,et al. Microstructural study of hydride formation in Zr-1Nb alloy[J]. Journal of Nuclear Materials,2003,322(2):195-203.
[36] 周邦新,郑斯奎,汪顺新. Zr-2合金中应力及应变诱发氢化锆析出过程的电子显微镜原位研究[J]. 金属学报,1989,25(3):34-39. ZHOU B X,ZHENG S K,WANG S X. In situ electron microscopy study on precipitation of zirconium hydrides induced by strain and stress in zircaloy-2[J].Acta Metallurgica Sinica,1989,25(3):34-39.
[37] WESTLAKE D. The habit planes of zirconium hydride in zirconium and zircaloy[J]. Journal of Nuclear Materials,1968,26(2):208-216.
[38] KUMAR N K,SZPUNAR J. EBSD studies on microstructure and crystallographic orientation of δ-hydrides in zircaloy-4, Zr-1%Nb and Zr-2.5%Nb[J]. Materials Science and Engineering:A,2011,528(21):6366-6374.
[39] CHEN L,WANG X,GONG W,et al. Effect of yttrium addition on microstructure and orientation of hydride precipitation in Zr-1Nb alloy[J]. International Journal of Hydrogen Energy,2014,39(36):21116-21126.
[40] KRISHNA K M,SRIVASTAVA D,DEY G,et al.Role of grain/phase boundary nature on the formation of hydrides in Zr-2.5%Nb alloy[J]. Journal of Nuclear Materials,2011,414(2):270-275.
[41] UNE K,NOGITA K,ISHIMOTO S,et al. Crystallography of zirconium hydrides in recrystallized zircaloy-2 fuel cladding by electron backscatter diffraction[J]. Journal of Nuclear Science and Technology,2004,41(7):731-740.
[42] UNE K,ISHIMOTO S. EBSP measurements of hydrogenated zircaloy-2 claddings with stress-relieved and recrystallized annealing conditions[J]. Journal of Nuclear Materials,2006,357(1):147-155.
[43] 曹国钦. 锆合金析出相的结构特征及形成过程研究[D]. 郑州:郑州大学,2015. CAO G Q. Analysis on the structural characters of precipitates and related formation process in Zr alloys[D]. Zhengzhou:Zhengzhou University,2015.
[44] WANG Z,GARBE U,LI H,et al. Hydrogen-induced microstructure, texture and mechanical property evolutions in a high-pressure torsion processed zirconium alloy[J]. Scripta Materialia,2012,67(9):752-755.
[45] YUAN G,CAO G,YUE Q,et al. Formation of nanocrystalline δ-ZrHx in zircoloy-4:orientation relationship and twinning[J]. Journal of Alloys and Compounds,2016,658(15):494-499.
[46] 刘彦章, 赵文金. Zr-Sn-Nb中氢化锆的电子背散射衍射研究[J]. 核动力工程, 2007(增刊1):27-30. LIU Y Z, ZHAO W J. Study on crystallography of zirconium hydrides in recrystallized Zr-Sn-Nb alloy by electron backscatter diffraction[J]. Nuclear Power Engineering,2007(Suppl 1):27-30.
[47] 毛培德,王凤岐,肖红,等. 锆-2和锆-4合金管中的氢化物取向与管织构关系的初步研究[J]. 核动力工程,1980(1):27-30,64. MAO P D,WANG F Q,XIAO H,et al. A preliminary study on the relationship between the orientation of the hydride and the tube texture in Zr-2 and Zr-4 alloy tubes[J]. Nuclear Power Engineering,1980(1):27-30,64.
[48] 李小宁,袁改焕,李恒羽. 钴靶件用锆合金管材氢化物取向的控制[J]. 钛工业进展,2008,25(5):32-34. LI X N,YUAN G H,LI H Y. Control of hydride orientation ratio in Zr-tube used for Co-target assembling[J]. Titanium Industry Progress,2008,25(5):32-34.
[49] 赵林科,王增民. 轧制和退火工艺对锆-4合金包壳管材氢化物取向的影响[J]. 钛工业进展,2011,28(1):34-37. ZHAO L K,WANG Z M. Effects of rolling and annealing process on hydride orientation of Zr-4 cladding tubes[J]. Titanium Industry Progress,2011,28(1):34-37.
[50] 成亚辉,孙阳平,翟建宇. 冷变形工艺对锆合金包壳管氢化物取向的影响[J]. 金属功能材料,2015,22(3):53-56. CHENG Y H,SUN Y P,ZHAI J Y. Effect of cold pilgering reduction on hydride orientation of zirconium alloy cladding tube[J]. Metallic Functional Materials,2015,22(3):53-56.
[51] 蒋有荣,周邦新,杨敏华. Zr-4板中氢化物应力再取向的研究[J]. 核动力工程,1993,14(4):368-373. JIANG Y R,ZHOU B X,YANG M H. A study of stress reorientation of hydrides in zircaloy-4 sheet[J]. Nuclear Power Engineering,1993,14(4):368-373.
[52] 蒋有荣,周邦新. 锆合金中氢化物应力再取向的研究(英文)[J]. 中国核科技报告,1994(增刊1):984-999. JIANG Y R, ZHOU B X. A study of stress reorientation of hydrides in zircaloy[J]. China Nuclear Science and Technology Report,1994(Suppl 1):984-999.
[53] 周邦新, 蒋有荣. Zr-4管中氢化物分布的应力再取向研究[J]. 核动力工程,1992,13(5):66-69. ZHOU B X,JIANG Y R. A study of stress reorientation of hydride in zircaloy-4 tube[J]. Nuclear Power Engineering,1992,13(5):66-69.
[54] SAKAMOTO K,NAKATSUKA M. Stress reorientation of hydrides in recrystallized zircaloy-2 sheet[J]. Journal of Nuclear Science and Technology,2006,43(9):1136-1141.
[55] CHU H,WU S,KUO R.Hydride reorientation in zircaloy-4 cladding[J]. Journal of Nuclear Materials,2008,373(1):319-327.
[56] LOUTHAN M R,MARSHALL R P. Control of hydride orientation in zircaloy[J]. Journal of Nuclear Materials,1963,9(2):170-184.
[57] BAI J B,PRIOUL C,FRAN O D. Hydride embrittlement in zircaloy-4 plate:part I. influence of microstructure on the hydride embrittlement in zircaloy-4 at 20℃ and 350℃[J]. Metallurgical and Materials Transactions A,1994,25(6):1185-1197.
[58] ARSENE S,BAI J B,BOMPARD P. Hydride embrittlement and irradiation effects on the hoop mechanical properties of pressurized water reactor(PWR) and boiling-water reactor(BWR) zircaloy cladding tubes:part I. hydride embrittlement in stress-relieved,annealed,and recrystallized zircaloys at 20℃ and 300℃[J]. Metallurgical and Materials Transactions A,2003,34(3):553-566.
[59] CHU H C,WU S K,CHIEN K F,et al. Effect of radial hydrides on the axial and hoop mechanical properties of zircaloy-4 cladding[J]. Journal of Nuclear Materials,2007,362(1):93-103.
[60] DAUM R S,MAJUMDAR S,LIU Y,et al. Radial-hydride embrittlement of high-burnup zircaloy-4 fuel cladding[J]. Journal of Nuclear Science and Technology,2006,43(9):1054-1067.
[61] HSU H H,TSAY L W. Effect of hydride orientation on fracture toughness of zircaloy-4 cladding[J]. Journal of Nuclear Materials,2011,408(1):67-72.
[62] KIM J S,KIM T H,KOOK D H,et al. Effects of hydride morphology on the embrittlement of zircaloy-4 cladding[J]. Journal of Nuclear Materials,2015,456:235-245.
[63] MIN S J,KIM M S,KIM K T. Cooling rate-and hydrogen content-dependent hydride reorientation and mechanical property degradation of Zr-Nb alloy claddings[J]. Journal of Nuclear Materials,2013,441(1/3):306-314.
[64] TSENG C C,SUN M H,CHAO C K. Hydride effect on crack instability of zircaloy cladding[J]. Nuclear Engineering and Design,2014,270(15):427-435.
[1] 范清松, 杨忠波, 周军, 石明华, 陈鑫, 李中奎. Zr-Sn-Nb-Fe系锆合金中第二相粒子研究进展[J]. 材料工程, 2016, 44(4): 110-118.
[2] 迟洪忠, 陈长聘, 李弘波, 任国新. 镁基储氢材料研究进展[J]. 材料工程, 2002, 0(8): 44-47,29.
[3] 丁珉, 曾飞, 潘峰. 离子束辅助沉积制备的铁锆多层膜中的相演化[J]. 材料工程, 2000, 0(4): 19-21,48.
Full text



版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持