Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (11): 15-22    DOI: 10.11868/j.issn.1001-4381.2016.001038
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
电化学处理对碳纤维表面加载碳纳米管的影响机理
宋磊1, 陈纪强2, 范汶鑫2, 王成国2
1. 临沂大学 土木工程与建筑学院, 山东 临沂 276000;
2. 山东大学 材料科学与工程学院, 济南 250061
Influencing Mechanism of Electrochemical Treatment on Preparation of CNTs-grafted on Carbon Fibers
SONG Lei1, CHEN Ji-qiang2, FAN Wen-xin2, WANG Cheng-guo2
1. School of Civil Engineering and Architecture, Linyi University, Linyi 276000, Shandong, China;
2. School of Materials Science and Engineering, Shandong University, Jinan 250061, China
全文: PDF(3577 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 利用电化学阳极氧化法改性碳纤维表面,开发了在连续碳纤维表面简单、高效、均匀地加载催化剂涂层的工艺。通过系统研究电化学改性强度对碳纤维表面物理与化学特性、催化剂颗粒与CNTs形貌、多尺度增强体拉伸强度及其增强复合材料层间剪切强度的影响,优化了碳纤维表面电化学改性工艺。结果表明:催化剂颗粒的形貌与分布不仅影响碳纤维表面沉积的CNTs的形貌,而且影响最终碳纤维表面生长CNTs多尺度增强体及其复合材料的力学性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋磊
陈纪强
范汶鑫
王成国
关键词 碳纤维碳纳米管电化学处理拉伸强度    
Abstract:Based on electrochemical anodic oxidation, an innovative technique was developed to efficiently obtain the uniform catalyst coating on continuous carbon fibers. Through systematic investigation on the effect of electrochemical modified strength on the physical and chemical characteristics of carbon fiber surface, catalyst particles and the morphology of CNTs-grafted carbon fibers, tensile strength of multi-scale reinforcement and the interlaminar shear strength of its reinforced composites, the electrochemical modification process on carbon fibre surface was optimized. The results show that the morphology and distribution of catalyst particles not only affect the morphology of CNTs deposited on the surface of carbon fibres,but also affect the mechanical properties of multi-scale reinforcement and its reinforced composites of CNTs-grafted carbon fibers.
Key wordscarbon fiber    carbon nanotube    electrochemical treatment    tensile strength
收稿日期: 2015-09-10      出版日期: 2017-11-18
中图分类号:  TB321  
通讯作者: 宋磊(1967-),女,副教授,主要研究建筑材料,联系地址:临沂大学土木工程与建筑学院(276000),E-mail:sl13869979076@163.com     E-mail: sl13869979076@163.com
引用本文:   
宋磊, 陈纪强, 范汶鑫, 王成国. 电化学处理对碳纤维表面加载碳纳米管的影响机理[J]. 材料工程, 2017, 45(11): 15-22.
SONG Lei, CHEN Ji-qiang, FAN Wen-xin, WANG Cheng-guo. Influencing Mechanism of Electrochemical Treatment on Preparation of CNTs-grafted on Carbon Fibers. Journal of Materials Engineering, 2017, 45(11): 15-22.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.001038      或      http://jme.biam.ac.cn/CN/Y2017/V45/I11/15
[1] SHARMA S P, LAKKAD S C. Effect of CNTs growth on carbon fibers on the tensile strength of CNTs grown carbon fiber-reinforced polymer matrix composites[J].Composites Part A,2011, 42(1):8-15.
[2] MATHUR R B, CHATTERJEE S, SINGH B P. Growth of carbon nanotubes on carbon fibre substrates to produce hybrid/phenolic composites with improved mechanical properties[J].Composites Science and Technology, 2008,68:1608-1615.
[3] SHARMA S P, LAKKAD S C. Compressive strength of carbon nanotubes grown on carbon fiber reinforced epoxy matrix multi-scale hybrid composites[J].Surface and Coatings Technology, 2010,205:350-355.
[4] AGNIHOTRI P, BUSU S, KAR K K. Effect of carbon nanotube length and density on the properties of carbon nanotube-coated carbon fiber/polyester composites[J]. Carbon,2011,49:3098-3106.
[5] 姚红伟, 钟盛根, 李显华, 等. CNTs强化碳纤维/环氧复合材料界面过渡层及其对界面性能的影响[J]. 材料工程, 2016, 44(12):13-21. YAO H W, ZHONG S G, LI X H, et al. Strengthening interface transition layer of carbon fiber/epoxy composites with CNTs and its effect on interfacial performance[J]. Journal of Materials Engineering, 2016, 44(12):13-21.
[6] ZHAO F, HUANG Y, LIU L, et al.Formation of a carbon fiber/polyhedral oligomeric silsesquioxane/carbon nanotube hybrid reinforcement and its effect on the interfacial properties of carbon fiber/epoxy composites[J]. Carbon, 2011,49:2624-2632.
[7] DAVIS D C, WIKERSON J W, ZHU J, et al. Improvements in mechanical properties of a carbon epoxy composites using nanotubes science and technology[J]. Composites Structure,2010, 92:2653-2662.
[8] AN Q, RIDER A N, THOSTENSON E T. Electrophoretic deposition of carbon nanotubes onto carbon-fiber fabric for production of carbon/epoxy composites with improved mechanical properties[J]. Carbon,2012,50:4130-4143.
[9] WANG Y H, LIN J, HUAN C, et al. Synthesis of large area aligned carbon nanotube arrays from C2H2-H2 mixture by rf plasma-enhanced chemical vapor deposition[J]. Applied Physics Letters, 2001,79:680-682.
[10] MATHUR R B, CHATTERJEE S, SINGH B P. Growth of carbon nanotubes on carbon fiber substrates to produce hybrid/phenolic composites with improved mechanical properties[J]. Composites Science and Technology, 2008,68:1608-1615.
[11] SHARMA S P, LAKKAD S C. Morphology study of carbon nanospecies grown on carbon fibers by thermal CVD technique[J]. Surface and Coatings Technology, 2009,203:1329-1335.
[12] CHEN P, ZHANG H B. Studies on structure and property of carbon-nanotubes formed catalytically from decomposition of CH4 or CO[J]. Chemical Journal of Chinese Universities,1998,19:765-769.
[13] SONOYAMA N, OHSHITA M, NIJUBU A, et al. Synthesis of carbon nanotubes on carbon fibers by means of two-step thermochemical vapor deposition[J]. Carbon, 2006,44:1754-1761.
[14] DOWN W B, BAKER R. Modification of the surface properties of carbon fibers via the catalytic growth of carbon nanofibers[J]. Journal of Materials Research, 1995,10:625-633.
[15] MASCHMANN M R, AMAMA P B, GOYAL A, et al. Freestanding vertically oriented single-walled carbon nanotubes synthesized using microwave plasma-enhanced CVD[J]. Carbon, 2006,44:2758-2763.
[16] PITTMAN C U, JIANG W, YUE Z R, et al. Surface properties of electrochemically oxidized carbon fibers[J]. Carbon,1999,37:1797-1807.
[17] 景鹏展, 朱姝, 余木火, 等. 基于碳纤维表面修饰制备碳纤维织物增强聚苯硫醚(CFF/PPS)热塑性复合材料[J]. 材料工程, 2016, 44(3):21-27. JING P Z, ZHU S, YU M H, et al. Preparation of carbon fiber fabric reinforced polyphenylene sulfide (CFF/PPS) thermoplastic composites based on surface modification of carbon fibers[J]. Journal of Materials Engineering, 2016, 44(3):21-27.
[18] 郭云霞, 刘杰, 梁节英. 电化学改性PAN基碳纤维表面及其机理探析[J]. 无机材料学报, 2009,24:853-858. GUO Y X,LIU J,LIANG J Y. Modification mechanism of the surface-treated PAN-based carbon fiber by electrochemical oxidation[J].Journal of Inorganic Materials,2009,24:853-858.
[19] 韩风, 潘鼎. 碳纤维电化学表面氧化处理效果的表征[J]. 高科技纤维与应用, 2000,25(1):39-43. HAN F, PAN D. Characterization of electro-chemically treatea carbon fiber surface[J].Hi-Tech Fiber and Application, 2000,25(1):39-43.
[20] GREEF N D, ZHANG L M, MAGREZ A, et al.Direct growth of carbon nanotubes on carbon fibers:effect of the CVD parameters on the degradation of mechanical properties of carbon fibers[J].Diamond and Related Materials, 2015,51:39-48.
[21] 林治涛. PAN基碳纤维制备过程中表面处理关键技术研究[D]. 济南:山东大学, 2014. LIN Z T. Study on key techniques of the surface treatment during the process of manufacturing PAN-based carbon fibers[D].Jinan:Shandong University,2014.
[22] LINSAY B, ABELM L, WATTS J F. A study of electrochemically treated PAN based carbon fibers by IGC and XPS[J]. Carbon, 2007,45:2433-2444.
[23] YUE Z R, JIANG W, WANG L, et al. Surface characterization of electrochemically oxidized carbon fibers[J]. Carbon, 1999, 37:1785-1796.
[24] NERUSHEV O A, DITTMAR S, MORJAN R E, et al. Particle size dependence and model for iron-catalyzed growth of carbon nanotubes by thermal chemical vapor deposition[J]. Journal of Applied Physics, 2003, 93:4185-4190.
[25] YUMITORI S, NAKANISHI Y. Effect of anodic oxidation of coal tar pitch-based carbon fiber on adhesion in epoxy matrix:part 1 comparison between H2SO4 and NaOH solutions[J]. Composites Part A, 1996, 27:1051-1058.
[1] 李翰, 樊茂华, 王纳斯丹, 范保鑫, 冯振宇. 碳纤维环氧树脂复合材料热响应预报方法[J]. 材料工程, 2020, 48(5): 49-55.
[2] 张淑娴, 邓凌峰, 连晓辉, 谭洁慧, 李金磊. 微量CNTs包覆对LiNi0.8Co0.1Mn0.1O2正极材料电化学性能的影响[J]. 材料工程, 2020, 48(5): 68-74.
[3] 李旭, 孙晓刚, 王杰, 陈玮, 黄雅盼, 梁国东, 魏成成, 胡浩. 无黏结剂柔性Si/CNT/纤维素复合阳极及其电化学性能[J]. 材料工程, 2020, 48(4): 139-144.
[4] 康宸, 刘倓, 武帅, 赵雅娴, 徐樑华. PAN纤维热松弛行为控制与聚集态结构调控[J]. 材料工程, 2020, 48(4): 165-171.
[5] 冯艳艳, 李彦杰, 杨文, 钟开应. 原位生长法制备花瓣状氢氧化钴及其电化学性能[J]. 材料工程, 2020, 48(3): 121-126.
[6] 杨斌, 李云龙, 王世杰, 聂瑞, 王照智. 拉应力下碳纳米管增强高分子基复合材料的应力分布[J]. 材料工程, 2020, 48(2): 79-86.
[7] 殷小春, 尹有华, 成迪, 杨智韬. 正应力支配下混合顺序对PA6/HDPE/CNTs体系结构及性能的影响[J]. 材料工程, 2020, 48(2): 87-93.
[8] 齐业雄, 姜亚明, 李嘉禄. 混杂比对碳/芳纶纤维混杂纬编双轴向多层衬纱织物增强复合材料力学性能的影响[J]. 材料工程, 2020, 48(2): 71-78.
[9] 陈玮, 孙晓刚, 胡浩, 王杰, 李旭, 梁国东, 黄雅盼, 魏成成. AC+Li(NiCoMn)O2/Li4Ti5O12+MWCNTs混合型电容器[J]. 材料工程, 2020, 48(1): 128-135.
[10] 徐鹏, 王冠韬, 刘奎, 罗斯达. 石墨烯/碳纳米管嵌入式纤维传感器对树脂基复合材料原位监测的结构-性能关系对比[J]. 材料工程, 2019, 47(9): 29-37.
[11] 李旭, 孙晓刚, 蔡满园, 王杰, 陈玮, 陈珑, 邱治文. 氟化多壁碳纳米管作正极对锂/氟电池性能的影响[J]. 材料工程, 2019, 47(8): 22-27.
[12] 顾善群, 刘燕峰, 李军, 陈祥宝, 张代军, 邹齐, 肖锋. 碳纤维/环氧树脂复合材料高速冲击性能[J]. 材料工程, 2019, 47(8): 110-117.
[13] 张世杰, 王汝敏, 刘宁, 廖英强, 程勇. 纺丝工艺对T800碳纤维及其复合材料性能的影响[J]. 材料工程, 2019, 47(8): 118-124.
[14] 欧秋仁, 嵇培军, 肖军, 武玲, 王璐. 国产T800碳纤维用氰酸酯树脂开发及其复合材料性能[J]. 材料工程, 2019, 47(8): 125-131.
[15] 蔡满园, 孙晓刚, 陈玮, 邱治文, 陈珑, 刘珍红, 聂艳艳. 以预锂化多壁碳纳米管为负极的锂离子电容器性能[J]. 材料工程, 2019, 47(5): 145-152.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn