Abstract:The CNTs/rGO/NG composite lithiumion battery anode material was synthesized by thermal reducing, using graphene oxide (GO) and carbon nanotubes (CNTs) as precursors for a 5 ∶ 3 proportion. The morphology, structure, and electrochemical performance of the composite were characterized by scanning electron microscopy(SEM), X-ray diffractometry(XRD), Fourier transform infrared spectra (FTIR) and electrochemical measurements. The results show that reduced graphene oxide and carbon nanotubes form a perfect three-dimensional network structure on the surface of natural graphite. CNTs/rGO/NG composite has good rate performance and cycle life,compared with pure natural graphite.The initial discharge capacity of designed anode is 479mAh/g at 0.1C, the reversible capacity up to 473mAh/g after 100 cycles,the capacity is still 439.5mAh/g, the capacity retention rate is 92%,and the capacity is 457, 433, 394mAh/g at 0.5, 1, 5C, respectively.
[1] ⅡJIMA S.Helical microtubules of graphitic carbon[J].Nature,1991,354(6348):56-58.
[2] GEIM A K,NOVOSELOV K S.The rise of graphene[J].Nature Materials,2007,6(3):183-191.
[3] MITTAL G,DHAND V,RHEE K Y,et al.A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites[J].Journal of Industrial and Engineering Chemistry,2015,21:11-25.
[4] KHOLMANOV I N,MAGNUSON C W,PINER R,et al.Optical,electrical,and electromechanical properties of hybrid graphene/carbon nanotube films[J].Advanced Materials,2015,27(19):3053-3059.
[5] 刘强,柯黎明,刘奋成,等.多壁碳纳米管增强铝基复合材料的高温力学性能[J].材料工程,2016,44(4):20-25. LIU Q,KE L M,LIU F C,et al.High temperature mechnical properties of alumium matrix composites reinforced by multi-walled carbon nanotubes[J].Journal of Materials Engineering,2016,44(4):20-25.
[6] FANG T H,CHANG W J,FENG Y L.Mechanical characteristics of graphene nanoribbons encapsulated in single-walled carbon nanotubes using molecular dynamics simulations[J].Applied Surface Science,2015,356:221-225.
[7] FANG S,SHEN L,ZHENG H,et al.Ge-graphene-carbon nanotube composite anode for high performance lithium-ion batteries[J].Journal of Materials Chemistry A,2015,3(4):1498-1503.
[8] YE M,HU C,LV L,et al.Graphene-winged carbon nanotubes as high-performance lithium-ion batteries anode with super-long cycle life[J].Journal of Power Sources,2016,305:106-114.
[9] CUI X,LV R,SAGAR R U R,et al.Reduced graphene oxide/carbon nanotube hybrid film as high performance negative electrode for supercapacitor[J].Electrochimica Acta,2015,169:342-350.
[10] 周晓,孙敏强,王庚超.石墨烯负载新型π-共轭聚合物纳米复合电极材料的合成及其超级电容特性[J].物理化学学报,2016,32(4):975-982. ZHOU X,SUN M Q,WANG G C.Synthesis and supercapacitance performance of graphene-supported π-conjugated polymer nanocomposite electrode materials[J].Acta Physico-Chimica Sinica,2016,32(4):975-982.
[11] XIN G,WANG Y,LIU X,et al.Preparation of self-supporting graphene on flexible graphite sheet and electrodeposition of polyaniline for supercapacitor[J].Electrochimica Acta,2015,167:254-261.
[12] GOVINDHAN M,LAFLEUR T,ADHIKARI B R,et al.Electrochemical sensor based on carbon nanotubes for the simultaneous detection of phenolic pollutants[J].Electroanalysis,2015,27(4):902-909.
[13] LI S,LUO Y,LV W,et al.Vertically aligned carbon nanotubes grown on graphene paper as electrodes in lithium-ion batteries and dye-sensitized solar cells[J].Advanced Energy Materials,2011,1(4):486-490.
[14] LEI W,LI F,CHENG H M.Carbon nanotubes and graphene for flexible electrochemical energy storage:from materials to devices[J].Advanced Materials,2016,28(22):218.
[15] ZHU C,MU X,VAN AKEN P A,et al.Fast Li storage in MoS2-graphene-carbon nanotube nanocomposites:advantageous functional integration of 0D,1D,and 2D nanostructures[J].Advanced Energy Materials,2015,5(4).
[16] VINAYAN B P,NAGAR R,RAMAN V,et al.Synthesis of graphene-multiwalled carbon nanotubes hybrid nanostructure by strengthened electrostatic interaction and its lithium ion battery application[J].Journal of Materials Chemistry,2012,22(19):9949-9956.
[17] HUANG Z D,ZHANG K,ZHANG T T,et al.Binder-free graphene/carbon nanotube/silicon hybrid grid as freestanding anode for high capacity lithium ion batteries[J].Composites Part A:Applied Science and Manufacturing,2016,84:386-392.
[18] ZHANG J,XIE Z,LI W,et al.High-capacity graphene oxide/graphite/carbon nanotube composites for use in Li-ion battery anodes[J].Carbon,2014,74:153-162.
[19] 邓凌峰,彭辉艳,严忠,等.碳纳米管/天然石墨复合负极材料的制备与表征[J].人工晶体学报,2016,45(4):1041-1046. DENG L F,PENG H Y,YAN Z,et al.Preparation and characterization of CNT/nature graphite composites anode materials[J].Journal of Synthetic Crystals,2016,45(4):1041-1046.
[20] 刘晓峰,米常焕,张文庆. 3D α-Fe2O3/掺氮石墨烯/碳纳米管复合材料及其储锂性能[J].无机化学学报,2014,30(2):242-250. LIU X F,MI C H,ZHANG W Q.Preparation and electrochemical lithium storage of 3D α-Fe2O3/nitrogen-doped graphene/carbon nanotubes nanocomposites[J].Chinese Journal of Inorganic Chemistry,2014,30(2):242-250.
[21] KONG D,LI X,ZHANG Y,et al.Encapsulating V2O5 into carbon nanotubes enables the synthesis of flexible high-performance lithium ion batteries[J].Energy & Environmental Science,2016,9(3):906-911.
[22] ILANGO P R,PRASANNA K,SUBBURAJ T,et al.Facile longitudinal unzipping of carbon nanotubes to graphene nanoribbons and their effects on LiMn2O4 cathodes in rechargeable lithium-ion batteries[J].Acta Materialia,2015,100:11-18.