1 School of Metallurgical Engineering, Anhui University of Technology, Maanshan 243032, Anhui, China 2 School of Metallurgy and Environment, Central South University, Changsha 410083, China
采用草酸盐沉淀-前驱体热分解法制备不同成分的FexNi1-x(0 < x < 1)合金粉。采用XRD和SEM分别测试前驱体和合金粉的物相结构与形貌。结果表明:随着Ni含量增大,前驱体物相由FeC2O4·2H2O逐渐向NiC2O4·2H2O转变,形貌由短棒状向立方体、多面体转变。FexNi1-x合金粉的几何外形与前驱体基本一致,但结构上呈多孔状,且粒径变小。FexNi1-x合金粉的物相结构随其成分变化,由富铁的bcc结构向富镍的fcc结构转变。测试不同成分FexNi1-x合金粉与石蜡复合物的电磁参数,并计算其吸波性能,Fe0.5Ni0.5具有最大的电磁损耗能力,厚3.0mm时在6.82GHz处具有最小反射损耗RL,为-52.58dB。Fe0.6Ni0.4具有最大有效频宽,厚1.5mm时反射损耗小于-10dB的有效频宽达4.02GHz。
The FexNi1-x (0 < x < 1) alloy powders with different compositions were prepared by an oxalate precipitation-precursor thermal decomposition process. The phase structure and morphology of the precursor and FexNi1-x powder were characterized by XRD and SEM, respectively. With the increase of Ni content, the phase structure of precursor was gradually changed from FeC2O4·2H2O to NiC2O4·2H2O, and the morphology was changed from short rod to cube and polyhedron. The FexNi1-x powders show porous structure and its geometric shape is similar to the corresponding precursor and the particle size becomes smaller. The phase structure of FexNi1-x powders is changed with the composition from iron-rich bcc to nickel-rich fcc structure. The electromagnetic parameters of the composites of FexNi1-x powders and paraffin were measured and the microwave absorbing properties were calculated. The results reveal that Fe0.5Ni0.5 sample shows a best electromagnetic loss, and when the composite thickness is 3.0mm, the minimum RL reaches -52.58dB at 6.82GHz. Fe0.6Ni0.4 sample with a thickness of 1.5mm shows a maximum effective bandwidth (RL < -10dB), which reaches up to 4.02GHz.
SHEN X Q , SONG F Z , XIANG J , et al. Shape anisotropy, exchange-coupling interaction and microwave absorption of hard/soft nanocomposite ferrite microfibers[J]. Journal of the American Ceramic Society, 2012, 95 (12): 3863- 3870.
doi: 10.1111/jace.2012.95.issue-12
ZHAO X M , LIU Y J . Dielectric properties of ferrite/silicon carbide/graphite three-layer composite coating materials[J]. Journal of Materials Engineering, 2017, 45 (1): 33- 37.
doi: 10.11868/j.issn.1001-4381.2015.000775
LI S M , JIANG S C , WANG Y L , et al. Study on "metamaterial" structural absorbing composite technology[J]. Journal of Materials Engineering, 2017, 45 (11): 10- 14.
doi: 10.11868/j.issn.1001-4381.2016.000152
4
SUN D P , ZOU Q , WANG Y P , et al. Controllable synthesis of porous Fe3O4@ZnO sphere decorated graphene for extraordinary electromagnetic wave absorption[J]. Nanoscale, 2014, 6 (12): 6557- 6562.
doi: 10.1039/C3NR06797A
5
LU S W , ZENG X J , NIE P , et al. Electromagnetic and microwave absorbing performance of ultra-thin Fe attached carbon nanotube hybrid buckypaper[J]. Functional Materials Letters, 2014, 7 (2): 1450006.
doi: 10.1142/S1793604714500064
6
WEI J Q , ZHANG Z Q , WANG B C , et al. Microwave reflection characteristics of surface-modified Fe50Ni50 fine particle composites[J]. Journal of Applied Physics, 2010, 108 (12): 123908.
doi: 10.1063/1.3524546
YAO Y L , ZHANG C F , ZHAN J , et al. Preparation of FeNi nano-alloy with various morphologies[J]. Progress of Chemistry, 2012, 24 (12): 2312- 2319.
8
YANG Y , XU C L , XIA Y X , et al. Synthesis and microwave absorption properties of FeCo nanoplates[J]. Journal of Alloys and Compounds, 2010, 493 (1/2): 549- 552.
9
ZHANG C F , YAO Y L , ZHAN J , et al. Template-free synthesis of Ni microfibers and their electromagnetic wave absorbing properties[J]. Journal of Physics D:Applied Physics, 2013, 46 (49): 495308.
doi: 10.1088/0022-3727/46/49/495308
10
QIAO L , HAN X H , GAO B , et al. Microwave absorption properties of the hierarchically branched Ni nanowire composites[J]. Journal of Applied Physics, 2009, 105 (5): 053911.
doi: 10.1063/1.3081649
11
FENG Y B , QIU T . Preparation, characterization and microwave absorbing properties of FeNi alloy prepared by gas atomization method[J]. Journal of Alloys and Compounds, 2012, 513 (5): 455- 459.
12
FENG Y B , QIU T . Enhancement of electromagnetic and microwave absorbing properties of gas atomized Fe-50wt%Ni alloy by shape modification[J]. Journal of Magnetism and Magnetic Materials, 2012, 324 (16): 2528- 2533.
doi: 10.1016/j.jmmm.2012.03.029
13
YU K C , MA C C M , TENG C C , et al. Preparation and microwave absorbency of Fe/epoxy and FeNi3/epoxy composites[J]. Journal of Alloys and Compounds, 2011, 509 (33): 8427- 8432.
doi: 10.1016/j.jallcom.2011.05.107
14
LIU J , FENG Y B , QIU T . Synthesis, characterization, and microwave absorption properties of Fe-40wt%Ni alloy prepared by mechanical alloying and annealing[J]. Journal of Magnetism and Magnetic Materials, 2011, 323 (23): 3071- 3076.
doi: 10.1016/j.jmmm.2011.06.073
15
姚永林. 超细FeNi合金粉热分解法制备及其吸波性能研究[D]. 长沙: 中南大学, 2014.
15
YAO Y L. Preparation of ultrafine FeNi alloy powders by thermal decomposition process and their microwave absorbing properties[D]. Changsha: Central South University, 2014.
16
MICHIELSSEN E , SAJER J M , RANJITHAN S , et al. Design of lightweight, broad-band microwave absorbers using genetic algorithms[J]. IEEE Transactions on Microwave Theory and Techniques, 1993, 41 (6): 1024- 1031.
doi: 10.1109/22.238519
WANG K W , SHI J M , FAN X . Designing methods of broadband absorbing materials[J]. Ordnance Material Science and Engineering, 2005, 29 (6): 42- 45.
18
ZHAN J , YAO Y L , ZHANG C F , et al. Synthesis and microwave absorbing properties of quasione-dimensional mesoporous NiCo2O4 nanostructure[J]. Journal of Alloys and Compounds, 2014, 585, 240- 244.
doi: 10.1016/j.jallcom.2013.09.091