Please wait a minute...
 
2222材料工程  2018, Vol. 46 Issue (8): 71-77    DOI: 10.11868/j.issn.1001-4381.2016.001067
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
FexNi1-x合金粉的制备及吸波性能
姚永林1,*(), 张传福2, 樊友奇1, 湛菁2
1 安徽工业大学 冶金工程学院, 安徽 马鞍山 243032
2 中南大学 冶金与环境学院, 长沙 410083
Preparation and Microwave Absorbing Properties of FexNi1-x Alloy Powders
Yong-lin YAO1,*(), Chuan-fu ZHANG2, You-qi FAN1, Jing ZHAN2
1 School of Metallurgical Engineering, Anhui University of Technology, Maanshan 243032, Anhui, China
2 School of Metallurgy and Environment, Central South University, Changsha 410083, China
全文: PDF(5475 KB)   HTML ( 16 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用草酸盐沉淀-前驱体热分解法制备不同成分的FexNi1-x(0 < x < 1)合金粉。采用XRD和SEM分别测试前驱体和合金粉的物相结构与形貌。结果表明:随着Ni含量增大,前驱体物相由FeC2O4·2H2O逐渐向NiC2O4·2H2O转变,形貌由短棒状向立方体、多面体转变。FexNi1-x合金粉的几何外形与前驱体基本一致,但结构上呈多孔状,且粒径变小。FexNi1-x合金粉的物相结构随其成分变化,由富铁的bcc结构向富镍的fcc结构转变。测试不同成分FexNi1-x合金粉与石蜡复合物的电磁参数,并计算其吸波性能,Fe0.5Ni0.5具有最大的电磁损耗能力,厚3.0mm时在6.82GHz处具有最小反射损耗RL,为-52.58dB。Fe0.6Ni0.4具有最大有效频宽,厚1.5mm时反射损耗小于-10dB的有效频宽达4.02GHz。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姚永林
张传福
樊友奇
湛菁
关键词 FeNi合金电磁参数反射损耗吸波    
Abstract

The FexNi1-x (0 < x < 1) alloy powders with different compositions were prepared by an oxalate precipitation-precursor thermal decomposition process. The phase structure and morphology of the precursor and FexNi1-x powder were characterized by XRD and SEM, respectively. With the increase of Ni content, the phase structure of precursor was gradually changed from FeC2O4·2H2O to NiC2O4·2H2O, and the morphology was changed from short rod to cube and polyhedron. The FexNi1-x powders show porous structure and its geometric shape is similar to the corresponding precursor and the particle size becomes smaller. The phase structure of FexNi1-x powders is changed with the composition from iron-rich bcc to nickel-rich fcc structure. The electromagnetic parameters of the composites of FexNi1-x powders and paraffin were measured and the microwave absorbing properties were calculated. The results reveal that Fe0.5Ni0.5 sample shows a best electromagnetic loss, and when the composite thickness is 3.0mm, the minimum RL reaches -52.58dB at 6.82GHz. Fe0.6Ni0.4 sample with a thickness of 1.5mm shows a maximum effective bandwidth (RL < -10dB), which reaches up to 4.02GHz.

Key wordsFeNi alloy    electromagnetic parameter    reflection loss    microwave absorbing
收稿日期: 2016-09-06      出版日期: 2018-08-17
中图分类号:  TB34  
基金资助:国家自然科学基金资助项目(51604005)
通讯作者: 姚永林     E-mail: yonglinyao@163.com
作者简介: 姚永林(1985-), 男, 讲师, 博士, 从事磁性功能材料方面的研究工作, 联系地址:安徽省马鞍山市安徽工业大学秀山校区冶金工程学院(243032), E-mail:yonglinyao@163.com
引用本文:   
姚永林, 张传福, 樊友奇, 湛菁. FexNi1-x合金粉的制备及吸波性能[J]. 材料工程, 2018, 46(8): 71-77.
Yong-lin YAO, Chuan-fu ZHANG, You-qi FAN, Jing ZHAN. Preparation and Microwave Absorbing Properties of FexNi1-x Alloy Powders. Journal of Materials Engineering, 2018, 46(8): 71-77.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.001067      或      http://jme.biam.ac.cn/CN/Y2018/V46/I8/71
Fig.1  不同成分前驱体的XRD谱图
Fig.2  不同成分前驱体的SEM图
(a)Fe0.9Ni0.1; (b)Fe0.6Ni0.4; (c)Fe0.5Ni0.5; (d)Fe0.25Ni0.75; (e)Fe0.2Ni0.8; (f)Fe0.1Ni0.9
Fig.3  FexNi1-x合金粉的XRD谱图
Fig.4  FexNi1-x合金粉的SEM图
(a)Fe0.9Ni0.1; (b)Fe0.6Ni0.4; (c)Fe0.5Ni0.5; (d)Fe0.25Ni0.75; (e)Fe0.2Ni0.8; (f)Fe0.1Ni0.9
Fig.5  FexNi1-x合金粉与石蜡复合物的介电性能
(a)介电常数实部;(b)介电常数虚部;(c)介电损耗因子
Fig.6  FexNi1-x合金粉与石蜡复合物的磁性能
(a)磁导率实部;(b)磁导率虚部;(c)磁损耗因子
Fig.7  FexNi1-x合金粉与石蜡复合物的反射损耗
(a)Fe0.9Ni0.1; (b)Fe0.6Ni0.4; (c)Fe0.5Ni0.5; (d)Fe0.25Ni0.75; (e)Fe0.2Ni0.8; (f)Fe0.1Ni0.9
Fig.8  Fe0.6Ni0.4样品的1/4波长匹配模型
(a)反射损耗;(b)反射损耗三维图;(c)公式(3)的计算结果图;(4)反射损耗的二维投影图
1 SHEN X Q , SONG F Z , XIANG J , et al. Shape anisotropy, exchange-coupling interaction and microwave absorption of hard/soft nanocomposite ferrite microfibers[J]. Journal of the American Ceramic Society, 2012, 95 (12): 3863- 3870.
doi: 10.1111/jace.2012.95.issue-12
2 赵晓明, 刘元军. 铁氧体/碳化硅/石墨三层涂层复合材料介电性能[J]. 材料工程, 2017, 45 (1): 33- 37.
doi: 10.11868/j.issn.1001-4381.2015.000775
2 ZHAO X M , LIU Y J . Dielectric properties of ferrite/silicon carbide/graphite three-layer composite coating materials[J]. Journal of Materials Engineering, 2017, 45 (1): 33- 37.
doi: 10.11868/j.issn.1001-4381.2015.000775
3 礼嵩明, 蒋诗才, 望咏林, 等. "超材料"结构吸波复合材料技术研究[J]. 材料工程, 2017, 45 (11): 10- 14.
doi: 10.11868/j.issn.1001-4381.2016.000152
3 LI S M , JIANG S C , WANG Y L , et al. Study on "metamaterial" structural absorbing composite technology[J]. Journal of Materials Engineering, 2017, 45 (11): 10- 14.
doi: 10.11868/j.issn.1001-4381.2016.000152
4 SUN D P , ZOU Q , WANG Y P , et al. Controllable synthesis of porous Fe3O4@ZnO sphere decorated graphene for extraordinary electromagnetic wave absorption[J]. Nanoscale, 2014, 6 (12): 6557- 6562.
doi: 10.1039/C3NR06797A
5 LU S W , ZENG X J , NIE P , et al. Electromagnetic and microwave absorbing performance of ultra-thin Fe attached carbon nanotube hybrid buckypaper[J]. Functional Materials Letters, 2014, 7 (2): 1450006.
doi: 10.1142/S1793604714500064
6 WEI J Q , ZHANG Z Q , WANG B C , et al. Microwave reflection characteristics of surface-modified Fe50Ni50 fine particle composites[J]. Journal of Applied Physics, 2010, 108 (12): 123908.
doi: 10.1063/1.3524546
7 姚永林, 张传福, 湛菁, 等. 不同形貌纳米FeNi合金的制备[J]. 化学进展, 2012, 24 (12): 2312- 2319.
7 YAO Y L , ZHANG C F , ZHAN J , et al. Preparation of FeNi nano-alloy with various morphologies[J]. Progress of Chemistry, 2012, 24 (12): 2312- 2319.
8 YANG Y , XU C L , XIA Y X , et al. Synthesis and microwave absorption properties of FeCo nanoplates[J]. Journal of Alloys and Compounds, 2010, 493 (1/2): 549- 552.
9 ZHANG C F , YAO Y L , ZHAN J , et al. Template-free synthesis of Ni microfibers and their electromagnetic wave absorbing properties[J]. Journal of Physics D:Applied Physics, 2013, 46 (49): 495308.
doi: 10.1088/0022-3727/46/49/495308
10 QIAO L , HAN X H , GAO B , et al. Microwave absorption properties of the hierarchically branched Ni nanowire composites[J]. Journal of Applied Physics, 2009, 105 (5): 053911.
doi: 10.1063/1.3081649
11 FENG Y B , QIU T . Preparation, characterization and microwave absorbing properties of FeNi alloy prepared by gas atomization method[J]. Journal of Alloys and Compounds, 2012, 513 (5): 455- 459.
12 FENG Y B , QIU T . Enhancement of electromagnetic and microwave absorbing properties of gas atomized Fe-50wt%Ni alloy by shape modification[J]. Journal of Magnetism and Magnetic Materials, 2012, 324 (16): 2528- 2533.
doi: 10.1016/j.jmmm.2012.03.029
13 YU K C , MA C C M , TENG C C , et al. Preparation and microwave absorbency of Fe/epoxy and FeNi3/epoxy composites[J]. Journal of Alloys and Compounds, 2011, 509 (33): 8427- 8432.
doi: 10.1016/j.jallcom.2011.05.107
14 LIU J , FENG Y B , QIU T . Synthesis, characterization, and microwave absorption properties of Fe-40wt%Ni alloy prepared by mechanical alloying and annealing[J]. Journal of Magnetism and Magnetic Materials, 2011, 323 (23): 3071- 3076.
doi: 10.1016/j.jmmm.2011.06.073
15 姚永林. 超细FeNi合金粉热分解法制备及其吸波性能研究[D]. 长沙: 中南大学, 2014.
15 YAO Y L. Preparation of ultrafine FeNi alloy powders by thermal decomposition process and their microwave absorbing properties[D]. Changsha: Central South University, 2014.
16 MICHIELSSEN E , SAJER J M , RANJITHAN S , et al. Design of lightweight, broad-band microwave absorbers using genetic algorithms[J]. IEEE Transactions on Microwave Theory and Techniques, 1993, 41 (6): 1024- 1031.
doi: 10.1109/22.238519
17 王科伟, 时家明, 樊祥. 宽频带吸波材料的设计方法[J]. 兵器材料科学与工程, 2005, 29 (6): 42- 45.
17 WANG K W , SHI J M , FAN X . Designing methods of broadband absorbing materials[J]. Ordnance Material Science and Engineering, 2005, 29 (6): 42- 45.
18 ZHAN J , YAO Y L , ZHANG C F , et al. Synthesis and microwave absorbing properties of quasione-dimensional mesoporous NiCo2O4 nanostructure[J]. Journal of Alloys and Compounds, 2014, 585, 240- 244.
doi: 10.1016/j.jallcom.2013.09.091
[1] 米玉洁, 宋明明, 张存瑞, 张贵恩, 王月祥, 常志敏. 羰基铁室温硫化硅橡胶复合材料的吸波性能[J]. 材料工程, 2022, 50(9): 120-126.
[2] 宋永智, 毕松, 侯根良, 李浩, 赵彦凯, 刘朝辉. MnO2纳米棒的吸波性能及其超构表面设计[J]. 材料工程, 2022, 50(7): 110-118.
[3] 于永涛, 刘元军. 原位聚合法制备铁氧体/聚苯胺吸波复合材料的研究进展[J]. 材料工程, 2022, 50(5): 90-99.
[4] 杜宗波, 时双强, 陈宇滨, 褚海荣, 杨程. 介电型石墨烯吸波复合材料研究进展[J]. 材料工程, 2022, 50(4): 74-84.
[5] 马国庆, 陈亮, 崔正明, 李维, 官建国. 溶解乳化法制备SBS包覆FeSiAl片状吸收剂的微波电磁性能[J]. 材料工程, 2022, 50(2): 111-117.
[6] 章玲, 王雪, 李家强, 罗楚养, 张威, 张礼颖. 碳纳米纤维增强聚酰亚胺复合气凝胶的合成与性能[J]. 材料工程, 2022, 50(1): 125-131.
[7] 杜宏艳, 张子栋, 田瑞, 张文锦, 张剑, 刘昕宇, 孙凯, 范润华. 基于人工电磁介质的宽带吸波器研究进展[J]. 材料工程, 2020, 48(6): 23-33.
[8] 崔燚, 魏恒勇, 杨静凯, 朱彬, 卜景龙, 梁波. 氮化物吸波材料研究进展[J]. 材料工程, 2020, 48(6): 82-90.
[9] 丁楚珩, 侯甲彬, 夏龙, 张昕宇, 钟博, 张涛. SiCNW-Cf/LAS复合材料的制备和电磁波吸收性能[J]. 材料工程, 2020, 48(5): 41-48.
[10] 马向雨, 邢孟达, 张耀辉, 宫元勋, 陈冲, 赵宏杰. 无反射层泡沫夹层结构设计及吸波性能研究[J]. 材料工程, 2020, 48(2): 94-99.
[11] 周莉, 柳汀, 郑典亮, 许勇刚. 选择表面工艺改性的CIPs涂层及其氧化物的吸波性能[J]. 材料工程, 2019, 47(9): 132-138.
[12] 黄金国, 郭宇, 赵治亚, 李雪, 邢明军, 谢镇坤. 基于有源超材料的可调超薄雷达吸波体研究[J]. 材料工程, 2019, 47(6): 77-81.
[13] 尚楷, 武志红, 张路平, 王倩, 郑海康. 模板法制备MoSi2/竹炭复合材料及吸波性能[J]. 材料工程, 2019, 47(5): 122-128.
[14] 张博, 付琪智, 林森, 陈廷芳, 孙仕勇, 蒋卉. 炭化纳米Co3O4/硅藻土复合材料制备及其性能[J]. 材料工程, 2019, 47(2): 62-67.
[15] 葛超群, 汪刘应, 刘顾. 碳基/羰基铁复合吸波材料的研究进展[J]. 材料工程, 2019, 47(12): 43-54.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn