Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (4): 31-37    DOI: 10.11868/j.issn.1001-4381.2016.001069
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
温度对CVD法在纤维表面制备BN涂层的影响
马良来1,2,3, 高乐1,3, 胡建宝1,3, 乔振杰1,2,3, 董绍明1,3
1. 中国科学院上海硅酸盐研究所 结构陶瓷与复合材料工程研究中心, 上海 200050;
2. 中国科学院大学, 北京 100049;
3. 中国科学院上海硅酸盐研究所 高性能陶瓷和超微结构国家重点实验室, 上海 200050
Effect of Temperature on Preparing Boron Nitride Interface on Fiber Surface by Chemical Vapor Deposition
MA Liang-lai1,2,3, GAO Le1,3, HU Jian-bao1,3, QIAO Zhen-jie1,2,3, DONG Shao-ming1,3
1. Structural Ceramics and Composites Engineering Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
全文: PDF(3201 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用BCl3-NH3-H2体系,在不同温度下通过化学气相沉积法在SiC纤维表面沉积BN涂层。研究温度对BN涂层的沉积速率、形貌、组成以及结构的影响。结果表明:在低温阶段(700~900℃),生长速率随着温度的增加而增大,该结果与阿仑尼乌斯定律相一致,计算得出该反应表观活化能为57.2kJ/mol。涂层表面光滑致密,沉积均匀,沉积速率受表面反应控制。在900℃时,反应速率达到最大值(174nm/h),此时,反应速率由表面反应控制转变为物质运输控制。在高于900℃时,由于气相成核的缘故,沉积速率随着温度的增加而减小,涂层变得疏松粗糙。BN涂层为化学计量比1:1的乱层结构,有序度随着制备温度的升高而增大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马良来
高乐
胡建宝
乔振杰
董绍明
关键词 CVDBN涂层沉积速率微观结构    
Abstract:Boron nitride interface was deposited on SiC fibers by chemical vapor deposition at different temperatures from BCl3-NH3-H2 mixtures.The effect of temperature on deposition rate,morphology,composition and structure of the interface was studied.The results show that in the low temperature range of 700-900℃,the deposition rate increases with increasing temperature complying with Arrhenius law,and the apparent active energy calculated is 57.2kJ/mol.The interface is smooth and dense and uniformly deposited on fibers, the deposition rate is controlled by surface reaction.At 900℃,the deposition rate reaches a maximum(174nm/h),at the same time, surface reaction control is changed to be mass-transportation control. Above 900℃,the deposition rate decreases with the increasing temperature due to the gas-phase nucleation,and the interface surface becomes loose and rough. BN interface is turbostratic structure with stoichiometric ratio 1:1,and the order degree increases with increasing temperature.
Key wordsCVD    BN interface    deposition rate    microstructure
收稿日期: 2016-09-08      出版日期: 2018-04-14
中图分类号:  TQ174  
通讯作者: 董绍明(1962-),男,博士,主要从事先进结构陶瓷及复合材料的设计与制备科学、材料物理化学、表面技术等方面的研究与开发,E-mail:smdong@mail.sic.ac.cn     E-mail: smdong@mail.sic.ac.cn
引用本文:   
马良来, 高乐, 胡建宝, 乔振杰, 董绍明. 温度对CVD法在纤维表面制备BN涂层的影响[J]. 材料工程, 2018, 46(4): 31-37.
MA Liang-lai, GAO Le, HU Jian-bao, QIAO Zhen-jie, DONG Shao-ming. Effect of Temperature on Preparing Boron Nitride Interface on Fiber Surface by Chemical Vapor Deposition. Journal of Materials Engineering, 2018, 46(4): 31-37.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.001069      或      http://jme.biam.ac.cn/CN/Y2018/V46/I4/31
[1] NASLAIN R R. Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactor:an overview[J]. Composites Science and Technology,2004,64(2):155-170.
[2] 周海军,董绍明,何平,等. 碳/碳-碳化硅复合材料的摩擦磨损行为与机理[J]. 无机材料学报,2013, 28(10):1057-1061. ZHOU H J,DONG S M,HE P, et al. Tribological behaviors and anti-wear mechanisms of carbon/carbon-silicon carbide composites[J]. Journal of Inorganic Materials, 2013, 28(10):1057-1061.
[3] KRENKEL W, BERNDT F. C/C-SiC composites for space applications and advanced friction systems[J]. Materials Science and Engineering:A,2005,412(1/2):177-181.
[4] 卢国锋,乔生儒,许艳. 连续纤维增强陶瓷基复合材料界面层研究进展[J]. 材料工程,2014(11):107-112. LU G F, QIAO S R, XU Y. Progress in research on interface layer of continuous fiber reinforced ceramic matrix composites[J]. Journal of Materials Engineering, 2014(11):107-112.
[5] NASLAIN R R.The design of the fiber-matrix interfacial zone in ceramic matrix composites[J]. Composites Part A, 1998, 29(9/10):1145-1155.
[6] 刘伟,曹腊梅,王岭,等. RTM成型工艺对Cf/SiBCN陶瓷基复合材料性能的影响[J]. 材料工程,2015, 43(6):1-6. LIU W, CAO L M, WANG L, et al.Effect of RTM process on the properties of Cf/SiBCN ceramic matrix composites[J]. Journal of Materials Engineering, 2015, 43(6):1-6.
[7] KERANS R J, HAY R S, PARTHASARATHY T A, et al. Interface design for oxidation-resistant ceramic composites[J]. Journal of the American Ceramic Society,2002, 85(11):2599-2632.
[8] 周清,董绍明,丁玉生,等. 界面涂层对气相渗硅Cf/SiC复合材料力学性能的影响[J]. 无机材料学报,2007, 22(6):1142-1146. ZHOU Q,DONG S M,DING Y S, et al. Effect of interphase on mechanical properties of infiltration Cf/SiC composites fabricated by vapor silicon[J]. Journal of Inorganic Materials, 2007, 22(6):1142-1146.
[9] MILLER J H, LIAW P K, LANDES J D. Influence of fiber coating thickness on fracture behavior of continuous woven nicalonfabric-reinforced silicon-carbide matrix ceramic composites[J]. Materials Science and Engineering:A, 2001, 317(1/2):49-58.
[10] YANG W, ARAKI H, NODA T,et al. Hi-Nicalon fiber-reinforced CVI-SiC matrix composites:effect of PyC and PyC-SiC multilayers on the fracture behaviors and flexural properties[J]. Materials Transactions, 2002(10):2568-2573.
[11] LOWDEN RA, MORE KL. The effect of fiber coatings on interfacial shear strength and the mechanical behavior of ceramic composites[J]. Materials Research Society Symposium Proceedings, 1990,170:205-214.
[12] NASLAIN R R, PAILLER R J F, LAMON J L. Single and multilayered interphases in SiC/SiC composites exposed to severe environmental conditions:an overview[J]. International Journal of Applied Ceramic Technology, 2010, 7(3):263-275.
[13] PODOBEDA L G, TSAPUK A K, BURAVOV A D. Oxidation of boron nitride under nonisothermal conditions[J]. Powder Metallurgy and Metal Ceramics, 1976, 165(9):44-47.
[14] COFER C G, ECONOMY J. Oxidation and hydrolytic stability of boron nitride. a new approach to improve the oxidation resistance of carbonaceous structure[J].Carbon,1995,33(4):389-395.
[15] LORRETTE C, WEISBECKER P, JACQUES S,et al. Deposition and characterization of hex-BN coating on carbon fibers using tris(dimethylamino) borane precursor[J]. Journal of the European Ceramic Society, 2007, 27(7):2737-2743.
[16] SNEDDON L G, MIRABELLI M G L, LYNCH A T, et al. Polymeric precursors to boron based ceramics[J]. Pure and Applied Chemistry,1991, 63(3):407-410.
[17] PACIOREK K J L, KRATZER R H, HARRIS D H, et al. Boron nitride preceramic polymers:4906763[P]. 1990-03-06.
[18] JACQUES S, BONNET B, BERTHET M P, et al. BN interphase processed by LP-CVD from tris (dimethylaino)borane and characterized using SiC/SiC minicomposites[J]. Ceramic Engineering and Science Proceedings, 2004, 25(4):123-128
[18] SHETTY R, WILCOX W R,Boron nitride coating on fused silica ampoules for semiconductor crystal growth[J]. Journal of Crystal Growth, 1995, 153(3/4):97-102.
[19] REBILLAT F, GUERRE A, BROSSE C R. Chemical and mechanical alterations of SiC nicalon fiber properties during the CVD/CVI process for boron nitride[J].Acta Materialia, 1999, 47(5):1685-1696.
[20] NASLAIN R, DUGNE O, GUETTE A, et al. Boron nitride interphase in ceramic-matrix composites[J]. Journal of the American Ceramic Society, 1991, 74(10):2482-2488.
[21] LI J S, ZHANG C R, LI B. Preparation and characterization of boron nitride coatings on carbon fibers from borazine by chemical vapor deposition[J]. Applied Surface Science, 2011, 257(11):7752-7757.
[22] LIU Y S, ZHANG L T, CHENG L F, et al. Effect of deposi tion temperature on boron-doped carbon coatings deposited from a BCl3-C3H6-H2 mixture using low pressure chemical vapor deposition[J]. Applied Surface Science, 2009, 255(21):8761-8768.
[23] MARC L, LIONEL V.Influence of isothermal chemical vapor deposition and chemical vapor infiltration conditions on the deposition kinetics and structure of boron nitride[J].Journal of the American Ceramic Society, 1999, 82(5):1187-1195.
[25] 陈鹏,沈波,王牧,等. MOCVD两步生长法制备GaN量子点[J]. 高技术通讯,1998, 6(5):5-8. CHEN P, SHEN B, WANG M, et al. The fabrication of GaNquantum dots using metal organic chemical vapor deposition[J]. Chinese High Technology Letters, 1998, 6(5):5-8.
[26] CHOLET V, VANDENBULCKE L, ROUAN J P. Characterization of boron nitride films deposited from BCl3-NH3-H2 mixtures in chemical vapor infiltration conditions[J]. Journal of Materials Science, 1994, 29(6):1417-1435.
[27] PANAYIOTATOS Y, LOGOTHETIDIS S, HANDREA M, et al. Homogeneous and amorphous sputtered sp3-bonded BN films at RT:a stress, spectroscopic ellipsometry and XPS study[J].Diamond and Related Materials 2003, 12(3):1151-1156.
[28] NEMANICH R J, SOLIN S J, RICHARD M. Light scattering study of boron nitride microcrystals[J]. Physical Review B, 1981, 23(12):6348-6356.
[1] 周堃, 刘杰, 赵宇. 硅橡胶密封件长期贮存老化行为[J]. 材料工程, 2018, 46(8): 163-168.
[2] 陈义川, 胡跃辉, 胡克艳, 张效华, 童帆, 帅伟强, 劳子轩. 共掺浓度对Na-Al共掺杂ZnO薄膜微观结构和光电性能的影响[J]. 材料工程, 2018, 46(6): 51-56.
[3] 刘红娟, 谢水波, 张希晨, 刘迎九, 曾涛涛. 氧化石墨烯复合材料吸附铀的研究进展[J]. 材料工程, 2018, 46(5): 11-21.
[4] 申造宇, 黄光宏, 何利民, 牟仁德, 李建平. 大尺寸TiAl/Ti3Al微叠层超薄板制备和力学性能[J]. 材料工程, 2018, 46(5): 72-78.
[5] 刘凌峰, 湛利华, 李文科. 升温速率对2219铝合金蠕变时效行为的影响[J]. 材料工程, 2018, 46(3): 117-123.
[6] 郭瑞华, 李振亮, 李慧琴, 樊易, 刘玉乾. 热处理对Mg-5Sm-0.6Zn-0.5Zr合金微观结构与力学性能的影响[J]. 材料工程, 2018, 46(11): 125-133.
[7] 刘荣军, 曹英斌, 杨会永, 严春雷, 龙宪海. CVD-SiC界面改性涂层对气相渗硅制备Cf/SiC复合材料力学性能的影响[J]. 材料工程, 2018, 46(1): 37-43.
[8] 刘皓, 李克智. 两种双基体C/C复合材料的微观结构与力学性能[J]. 材料工程, 2017, 45(8): 38-42.
[9] 陈红梅, 祝玉林, 王松. 后热处理对Cf/ZrC复合材料微观结构及性能的影响[J]. 材料工程, 2017, 45(8): 43-48.
[10] 洪起虎, 燕绍九, 杨程, 张晓艳, 戴圣龙. 氧化石墨烯/铜基复合材料的微观结构及力学性能[J]. 材料工程, 2016, 44(9): 1-7.
[11] 郗旸, 张淇萱, 李才巨, 谭军, 朱心昆, 王刚, 易健宏. Mo离子注入对纯铜表面纳米层稳定性的影响[J]. 材料工程, 2016, 44(8): 40-45.
[12] 张鉴炜, 石刚, 江大志. Buckypaper/环氧复合材料加压滤渗浸渍法制备工艺研究[J]. 材料工程, 2016, 44(7): 1-6.
[13] 刘皓, 李克智. C/C复合材料不同基体炭的微观结构[J]. 材料工程, 2016, 44(7): 7-12.
[14] 张洋, 宋博瀚, 闫久春. 超声波振动下SiC陶瓷颗粒与Zn-Al液态合金的相互作用机制[J]. 材料工程, 2016, 44(2): 28-34.
[15] 吕生华, 朱琳琳, 李莹, 贺亚亚, 杨文强. 氧化石墨烯复合材料的研究现状及进展[J]. 材料工程, 2016, 44(12): 107-117.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn