Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (3): 48-54    DOI: 10.11868/j.issn.1001-4381.2016.001076
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
B4CP/PI聚酰亚胺复合薄膜耐高温及热中子辐照屏蔽性能研究
李晓敏1,2, 吴菊英3, 唐昶宇1, 袁萍3, 邢涛3, 张凯3, 梅军1, 黄渝鸿3
1. 中物院成都科学技术发展中心 成都绿色能源与绿色制造技术研发中心, 成都 610200;
2. 南昌大学 光伏研究院, 南昌 330031;
3. 中国工程物理研究院 总体工程研究所, 四川 绵阳 621900
Thermal Neutron Radiation Shielding and Thermal Properties of B4CP/PI Polyimide Composite Films
LI Xiao-min1,2, WU Ju-ying3, TANG Chang-yu1, YUAN Ping3, XING Tao3, ZHANG Kai3, MEI Jun1, HUANG Yu-hong3
1. Chengdu Green Energy and Green Manufacturing Technology R & D Center, Chengdu Development Center of Science and Technology, China Academy of Engineering Physics, Chengdu 610200, China;
2. Institute of Photovoltaics, Nanchang University, Nanchang 330031, China;
3. Institute of Systems Engineering, China Academy of Engineering Physics, Mianyang 621900, Sichuan, China
全文: PDF(2595 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 以耐高温型聚酰亚胺为基体,微米碳化硼(B4C)为热中子吸收剂,采用粉体表面改性及超声湿混-热亚胺化成膜工艺成功制备了一系列B4CP/PI聚酰亚胺复合薄膜,重点探讨了不同B4C含量条件下复合薄膜的耐热性能和力学性能以及不同B4C含量、不同复合薄膜厚度条件下复合材料的热中子屏蔽性能。研究表明:采用上述工艺,B4C功能粒子在聚酰亚胺基体中可均匀分散;B4CP/PI复合薄膜的耐热性随B4C含量的增加显著提高,力学性能则呈相反趋势;所制备的B4CP/PI复合薄膜表现出优异的热中子屏蔽性能,中子透射率I/I0随复合薄膜厚度增加及B4C含量增加呈指数变化规律。据此,可通过材料结构设计,满足不同领域对该类耐高温中子防护材料的应用需求。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李晓敏
吴菊英
唐昶宇
袁萍
邢涛
张凯
梅军
黄渝鸿
关键词 聚酰亚胺碳化硼热中子辐照屏蔽热性能力学性能    
Abstract:B4CP/PI polyimide composite films with different powder contents and thicknesses were prepared by particle surface modification and wet mixing machinery-thermal imidization method, using high temperature polyimide as matrix and micro-sized boron carbide (B4C) as thermal neutron absorption material. The thermal neutron radiation shielding property, thermal stability and mechanical property of B4CP/PI polyimide composite films were mainly discussed in this paper. It is shown that the micro-sized B4C functional particles can be well dispersed in PMDA-ODA polyimide matrix, and the thermal stability of B4CP/PI polyimide composite films are significantly improved with the increase of B4C content. However, the mechanical properties of the composite films present the opposite trend; meanwhile, the B4CP/PI polyimide composite films exhibit excellent thermal neutron radiation shielding properties, and the neutron permeability I/I0 presents exponential relationship with the increasing thickness of composite and B4C filler particle content. Therefore,through structural design of the materials,the applications requirements in different fields for materials with high temperature resistant and thermal neutron radiation shielding properties can be met.
Key wordspolyimide    boron carbide    thermal neutron radiation shielding    thermal stability    mechanical property
收稿日期: 2016-09-09      出版日期: 2018-03-20
中图分类号:  TB332  
  TB35  
  X946  
基金资助: 
通讯作者: 梅军(1963-),男,研究员,研究方向:功能材料,联系地址:四川省成都市双流区银河路596号中物院成都科学技术发展中心成都绿色能源与绿色制造中心(610200),E-mail:meijun12@126.com     E-mail: meijun12@126.com
引用本文:   
李晓敏, 吴菊英, 唐昶宇, 袁萍, 邢涛, 张凯, 梅军, 黄渝鸿. B4CP/PI聚酰亚胺复合薄膜耐高温及热中子辐照屏蔽性能研究[J]. 材料工程, 2018, 46(3): 48-54.
LI Xiao-min, WU Ju-ying, TANG Chang-yu, YUAN Ping, XING Tao, ZHANG Kai, MEI Jun, HUANG Yu-hong. Thermal Neutron Radiation Shielding and Thermal Properties of B4CP/PI Polyimide Composite Films. Journal of Materials Engineering, 2018, 46(3): 48-54.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.001076      或      http://jme.biam.ac.cn/CN/Y2018/V46/I3/48
[1] ABU-KHADER M M. Recent advances in nuclear power:a review[J]. Progress in Nuclear Energy, 2009, 51(2):225-235.
[2] CARINA H, KARL Z, PETRA K. Stability of 10B4C thin films under neutron radiation[J]. Radiation Physics and Chemistry, 2015, 113:14-19.
[3] WANG P, TANG X, CHAI H, et al. Design, fabrication, and properties of a continuous carbon-fiber reinforced Sm2O3/polyimide gamma ray/neutron shielding material[J]. Fusion Engineering and Design, 2015, 101:218-225.
[4] SHIN J W, LEE J W, YU S, et al. Polyethylene/boron-containing composites for radiation shielding[J]. Thermochimica Acta, 2014, 585:5-9.
[5] HARRISON C, WEAVER S, BERTELSEN C, et al. Polyethylene/boron nitride composites for space radiation shielding[J]. Journal of Applied Polymer Science, 2008, 109:2529-2538.
[6] DUAN Y H, SUN Y, PENG M J, et al. Mechanical and shielding properties of an as-cast new Pb-B shielding composite materials[J]. Advanced Materials Research, 2010, 150/151:56-63.
[7] ZAHRA S, AMIRMOHAMMAD B, FARHOOD Z, et al. Effect of particle size and percentages of Boron carbide on the thermal neutron radiation shielding properties of HDPE/B4C composite:experimental and simulation studies[J]. Radiation Physics and Chemistry, 2016, 127:182-187.
[8] ÖZDEMIR T, GVNGÖR A, REYHANCANÍ A. Flexible neutron shielding composite material of EPDM rubber with boron trioxide:mechanical, thermal investigations and neutron shielding tests[J]. Radiation Physics and Chemistry, 2017, 131:7-12.
[9] ZHANG X L, YANG M T, ZHANG X M. Enhancing the neutron shielding ability of polyethylene composites with an alternating multi-layered structure[J]. Composites Science and Technology, 2017, 150:16-23.
[10] HONF J P, YOON S W, HWANF T S, et al. Interphase control of boron nitride/epoxy composites for high thermal conductivity[J]. Korea-Australia Rheology Journal, 2010, 22(4):259-264.
[11] CHEN Y, HAN D H, OUYANG W, et al. Fabrication and evaluation of polyamide 6 composites with electrospun polyimide nanofibers as skeletal framework[J]. Composites:Part B, 2012, 43(5):2382-2388.
[12] CAEINA H, KARL Z, PETRA K, et al. Stability of 10B4C thin films under neutron radiation[J]. Radiation Physics and Chemistry, 2015, 113:14-19.
[13] BUYUK B, TUGRUL A B. Gamma and neutron attenuation behaviors of boron carbide-silicon carbide composite[J]. Annuals of Nuclear Energy, 2014, 71:46-51.
[14] 李哲夫, 薛向欣. 含硼矿物复合材料对1keV,1eV及0.0253eV能量中子的屏蔽性能[J]. 东北大学学报(自然科学版), 2011, 23(12):1716-1720. LI Z F, XUE X X. Shielding properties of boron-containing ores composites for 1keV, 1eV and 0.0253eV neutron[J]. Journal of Northeastern University (Natural Science), 2011, 23(12):1716-1720.
[15] HARRISON C, WEAVER S, BERTELSEN C, et al. Polyethylene/boron nitride composites for space radiation shielding[J]. Journal of Applied Polymer Science, 2008, 109(4):2529-2538.
[16] 戴龙泽. B4C/Al中子吸收复合材料的制备、性能测试与蒙特卡罗模拟[D]. 南京:南京航空航天大学, 2014. DAI L Z. The produce, property research and monte-carlo simulation of B4C/Al neutron absorber composites[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2014.
[17] JIANG Q, WANG X, ZHU Y T, et al. Mechanical, electrical and thermal properties of aligned carbon nanotube/polyimide composites[J]. Composites:Part B, 2014, 56:408-412.
[18] SEYHUN K, PELIN G, EMEK M D, et al. Characterization of boron carbide particles and its shielding behavior against neutron radiation[J]. Energy Conversion and Management, 2013, 72:39-44.
[19] ÇAKMAKÇI E,GVNGÖR A. Preparation and characterization of flame retardant and proton conducting boron phosphate/polyimide composites[J]. Polymer Degradation and Stability, 2013, 98:927-933.
[20] CARINA H, KARL Z, PETRA K, et al. Stability of 10B4C thin films under neutron radiation[J]. Radiation Physics and Chemistry, 2015, 113:14-19.
[21] HUANG Y C, LO T Y, CHAO C G, et al. Anti-corrosion characteristics of polyimide/h-boron nitride composite films with different polymer configurations[J]. Surface & Coating Technology, 2014, 260:113-117.
[22] SHIN J W, LEE J W, YU S, et al. Polyethylene/boron-containing composites for radiation shielding[J]. Thermochimica Acta, 2014, 585:5-9.
[23] 徐正彬, 贾梦秋. 碳化硼的改性及其在有机硅树脂中的应用[J]. 北京化工大学学报, 2007, 34(增刊2):52-56. XU Z B, JIA M Q. Modification of boron carbide and its application in the silicon coating[J]. Journal of Beijing University of Chemical Technology, 2007, 34(Suppl 2):52-56.
[24] LI T L, HSU S L. Enhanced thermal conductivity of polyimide films via a hybrid of micro-and nano-sized boron nitride[J]. Journal of Physical Chemistry B, 2010, 114:6825-6829.
[25] MVLAZIM Y, KIZILKAYA C, and KAHRAMAN M V. Thermal and neutron shielding properties of 10B2O3/polyimide hybrid materials[J]. Polymer Bulletin, 2011, 67:1741-1750.
[26] BUYUK B, TUGRUL A B. Gamma and neutron attenuation behaviors of boron carbide-silicon carbide composite[J]. Annuals of Nuclear Energy, 2014, 71:46-51.
[27] ZHANG G H, LIU J M, XUE Z H, et al. Measurement of 10B content in thin-film 10B samples[J]. Applied Radiation & Isotopes, 2011, 69(6):858-861.
[28] LAVELLE C M, DEACON R M, HUSSEY D S, et al. Characterization of boron coated vitreous carbon foam for neutron detection[J]. Nuclear Instruments and Methods in Physics Research A, 2013, 729(3):346-355.
[29] KIPCAK A S, GURSES P G, DERUN E M, et al. Characterization of boron carbide particles and its shielding behavior against neuron radiation[J]. Energy Conversion and Management, 2013, 72:39-44.
[1] 赵云松, 张迈, 郭小童, 郭媛媛, 赵昊, 刘砚飞, 姜华, 张剑, 骆宇时. 航空发动机涡轮叶片超温服役损伤的研究进展[J]. 材料工程, 2020, 48(9): 24-33.
[2] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[3] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[4] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[5] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[6] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[7] 李淑文, 赵孔银, 陈康, 李金刚, 赵磊, 王晓磊, 魏俊富. TiO2共混丝朊接枝聚丙烯腈过滤膜制备及性能研究[J]. 材料工程, 2020, 48(3): 47-52.
[8] 赵新龙, 金鑫, 丁成成, 俞娟, 王晓东, 黄培. 热处理时间对聚甲基丙烯酰亚胺(PMI)泡沫结构和性能的影响[J]. 材料工程, 2020, 48(3): 53-58.
[9] 叶寒, 黄俊强, 张坚强, 李聪聪, 刘勇. 纳米WC增强选区激光熔化AlSi10Mg显微组织与力学性能[J]. 材料工程, 2020, 48(3): 75-83.
[10] 姚小飞, 田伟, 李楠, 王萍, 吕煜坤. 铜导线表面热浸镀PbSn合金镀层的组织与性能[J]. 材料工程, 2020, 48(3): 148-154.
[11] 刘也川, 张松, 谭俊哲, 关锰, 陶邵佳, 张春华. 机械滚压对A473M钢疲劳性能的影响[J]. 材料工程, 2020, 48(3): 163-169.
[12] 李昊卿, 田玉晶, 赵而团, 郭红, 方晓英. S32750双相不锈钢相界与晶界特征对其力学性能和耐蚀性能的影响[J]. 材料工程, 2020, 48(2): 133-139.
[13] 钦兰云, 何晓娣, 李明东, 杨光, 高博文. 退火处理对激光沉积制造TC4钛合金组织及力学性能影响[J]. 材料工程, 2020, 48(2): 148-155.
[14] 刘天豪, 郭胜锋. 铁基块体非晶合金的形成规律与力学性能研究进展[J]. 材料工程, 2020, 48(11): 46-57.
[15] 唐鹏钧, 房立家, 杨斌, 陈冰清, 李沛勇, 张学军. 激光选区熔化AlSi7MgTi合金显微组织与性能[J]. 材料工程, 2020, 48(11): 116-123.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn