Thermal Neutron Radiation Shielding and Thermal Properties of B4CP/PI Polyimide Composite Films
Xiao-min LI1,2, Ju-ying WU3, Chang-yu TANG1, Ping YUAN3, Tao XING3, Kai ZHANG3, Jun MEI1,*(), Yu-hong HUANG3
1 Chengdu Green Energy and Green Manufacturing Technology R & D Center, Chengdu Development Center of Science and Technology, China Academy of Engineering Physics, Chengdu 610200, China 2 Institute of Photovoltaics, Nanchang University, Nanchang 330031, China 3 Institute of Systems Engineering, China Academy of Engineering Physics, Mianyang 621900, Sichuan, China
B4CP/PI polyimide composite films with different powder contents and thicknesses were prepared by particle surface modification and wet mixing machinery-thermal imidization method, using high temperature polyimide as matrix and micro-sized boron carbide (B4C) as thermal neutron absorption material. The thermal neutron radiation shielding property, thermal stability and mechanical property of B4CP/PI polyimide composite films were mainly discussed in this paper. It is shown that the micro-sized B4C functional particles can be well dispersed in PMDA-ODA polyimide matrix, and the thermal stability of B4CP/PI polyimide composite films are significantly improved with the increase of B4C content. However, the mechanical properties of the composite films present the opposite trend; meanwhile, the B4CP/PI polyimide composite films exhibit excellent thermal neutron radiation shielding properties, and the neutron permeability I/I0 presents exponential relationship with the increasing thickness of composite and B4C filler particle content. Therefore, through structural design of the materials, the applications requirements in different fields for materials with high temperature resistant and thermal neutron radiation shielding properties can be met.
ABU-KHADER M M . Recent advances in nuclear power:a review[J]. Progress in Nuclear Energy, 2009, 51 (2): 225- 235.
doi: 10.1016/j.pnucene.2008.05.001
2
CARINA H , KARL Z , PETRA K . Stability of 10B4C thin films under neutron radiation[J]. Radiation Physics and Chemistry, 2015, 113, 14- 19.
doi: 10.1016/j.radphyschem.2015.04.006
3
WANG P , TANG X , CHAI H , et al. Design, fabrication, and properties of a continuous carbon-fiber reinforced Sm2O3/polyimide gamma ray/neutron shielding material[J]. Fusion Engineering and Design, 2015, 101, 218- 225.
doi: 10.1016/j.fusengdes.2015.09.007
4
SHIN J W , LEE J W , YU S , et al. Polyethylene/boron-containing composites for radiation shielding[J]. Thermochimica Acta, 2014, 585, 5- 9.
doi: 10.1016/j.tca.2014.03.039
5
HARRISON C , WEAVER S , BERTELSEN C , et al. Polyethylene/boron nitride composites for space radiation shielding[J]. Journal of Applied Polymer Science, 2008, 109, 2529- 2538.
doi: 10.1002/(ISSN)1097-4628
6
DUAN Y H , SUN Y , PENG M J , et al. Mechanical and shielding properties of an as-cast new Pb-B shielding composite materials[J]. Advanced Materials Research, 2010, 150/151, 56- 63.
doi: 10.4028/www.scientific.net/AMR.150-151
7
ZAHRA S , AMIRMOHAMMAD B , FARHOOD Z , et al. Effect of particle size and percentages of Boron carbide on the thermal neutron radiation shielding properties of HDPE/B4C composite:experimental and simulation studies[J]. Radiation Physics and Chemistry, 2016, 127, 182- 187.
doi: 10.1016/j.radphyschem.2016.06.027
8
ÖZDEMIRT, GVNGÖRA, REYHANCANÍA. Flexible neutron shielding composite material of EPDM rubber with boron trioxide:mechanical, thermal investigations and neutron shielding tests[J]. Radiation Physics and Chemistry, 2017, 131, 7- 12.
9
ZHANG X L , YANG M T , ZHANG X M . Enhancing the neutron shielding ability of polyethylene composites with an alternating multi-layered structure[J]. Composites Science and Technology, 2017, 150, 16- 23.
doi: 10.1016/j.compscitech.2017.06.007
10
HONF J P , YOON S W , HWANF T S , et al. Interphase control of boron nitride/epoxy composites for high thermal conductivity[J]. Korea-Australia Rheology Journal, 2010, 22 (4): 259- 264.
11
CHEN Y , HAN D H , OUYANG W , et al. Fabrication and evaluation of polyamide 6 composites with electrospun polyimide nanofibers as skeletal framework[J]. Composites:Part B, 2012, 43 (5): 2382- 2388.
doi: 10.1016/j.compositesb.2011.11.071
12
CAEINA H , KARL Z , PETRA K , et al. Stability of 10B4C thin films under neutron radiation[J]. Radiation Physics and Chemistry, 2015, 113, 14- 19.
doi: 10.1016/j.radphyschem.2015.04.006
13
BUYUK B , TUGRUL A B . Gamma and neutron attenuation behaviors of boron carbide-silicon carbide composite[J]. Annuals of Nuclear Energy, 2014, 71, 46- 51.
doi: 10.1016/j.anucene.2014.03.026
LI Z F , XUE X X . Shielding properties of boron-containing ores composites for 1keV, 1eV and 0.0253eV neutron[J]. Journal of Northeastern University (Natural Science), 2011, 23 (12): 1716- 1720.
15
HARRISON C , WEAVER S , BERTELSEN C , et al. Polyethylene/boron nitride composites for space radiation shielding[J]. Journal of Applied Polymer Science, 2008, 109 (4): 2529- 2538.
doi: 10.1002/(ISSN)1097-4628
DAI L Z. The produce, property research and monte-carlo simulation of B4C/Al neutron absorber composites[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014.
17
JIANG Q , WANG X , ZHU Y T , et al. Mechanical, electrical and thermal properties of aligned carbon nanotube/polyimide composites[J]. Composites:Part B, 2014, 56, 408- 412.
doi: 10.1016/j.compositesb.2013.08.064
18
SEYHUN K , PELIN G , EMEK M D , et al. Characterization of boron carbide particles and its shielding behavior against neutron radiation[J]. Energy Conversion and Management, 2013, 72, 39- 44.
doi: 10.1016/j.enconman.2012.08.026
19
ÇAKMAKÇIE, GVNGÖRA. Preparation and characterization of flame retardant and proton conducting boron phosphate/polyimide composites[J]. Polymer Degradation and Stability, 2013, 98, 927- 933.
20
CARINA H , KARL Z , PETRA K , et al. Stability of 10B4C thin films under neutron radiation[J]. Radiation Physics and Chemistry, 2015, 113, 14- 19.
doi: 10.1016/j.radphyschem.2015.04.006
21
HUANG Y C , LO T Y , CHAO C G , et al. Anti-corrosion characteristics of polyimide/h-boron nitride composite films with different polymer configurations[J]. Surface & Coating Technology, 2014, 260, 113- 117.
22
SHIN J W , LEE J W , YU S , et al. Polyethylene/boron-containing composites for radiation shielding[J]. Thermochimica Acta, 2014, 585, 5- 9.
doi: 10.1016/j.tca.2014.03.039
XU Z B , JIA M Q . Modification of boron carbide and its application in the silicon coating[J]. Journal of Beijing University of Chemical Technology, 2007, 34 (Suppl 2): 52- 56.
24
LI T L , HSU S L . Enhanced thermal conductivity of polyimide films via a hybrid of micro-and nano-sized boron nitride[J]. Journal of Physical Chemistry B, 2010, 114, 6825- 6829.
doi: 10.1021/jp101857w
25
MVLAZIM Y , KIZILKAYA C , KAHRAMAN M V . Thermal and neutron shielding properties of 10B2O3/polyimide hybrid materials[J]. Polymer Bulletin, 2011, 67, 1741- 1750.
doi: 10.1007/s00289-011-0481-4
26
BUYUK B , TUGRUL A B . Gamma and neutron attenuation behaviors of boron carbide-silicon carbide composite[J]. Annuals of Nuclear Energy, 2014, 71, 46- 51.
doi: 10.1016/j.anucene.2014.03.026
27
ZHANG G H , LIU J M , XUE Z H , et al. Measurement of 10B content in thin-film 10B samples[J]. Applied Radiation & Isotopes, 2011, 69 (6): 858- 861.
28
LAVELLE C M , DEACON R M , HUSSEY D S , et al. Characterization of boron coated vitreous carbon foam for neutron detection[J]. Nuclear Instruments and Methods in Physics Research A, 2013, 729 (3): 346- 355.
29
KIPCAK A S , GURSES P G , DERUN E M , et al. Characterization of boron carbide particles and its shielding behavior against neuron radiation[J]. Energy Conversion and Management, 2013, 72, 39- 44.
doi: 10.1016/j.enconman.2012.08.026