Please wait a minute...
 
2222材料工程  2018, Vol. 46 Issue (3): 48-54    DOI: 10.11868/j.issn.1001-4381.2016.001076
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
B4CP/PI聚酰亚胺复合薄膜耐高温及热中子辐照屏蔽性能研究
李晓敏1,2, 吴菊英3, 唐昶宇1, 袁萍3, 邢涛3, 张凯3, 梅军1,*(), 黄渝鸿3
1 中物院成都科学技术发展中心 成都绿色能源与绿色制造技术研发中心, 成都 610200
2 南昌大学 光伏研究院, 南昌 330031
3 中国工程物理研究院 总体工程研究所, 四川 绵阳 621900
Thermal Neutron Radiation Shielding and Thermal Properties of B4CP/PI Polyimide Composite Films
Xiao-min LI1,2, Ju-ying WU3, Chang-yu TANG1, Ping YUAN3, Tao XING3, Kai ZHANG3, Jun MEI1,*(), Yu-hong HUANG3
1 Chengdu Green Energy and Green Manufacturing Technology R & D Center, Chengdu Development Center of Science and Technology, China Academy of Engineering Physics, Chengdu 610200, China
2 Institute of Photovoltaics, Nanchang University, Nanchang 330031, China
3 Institute of Systems Engineering, China Academy of Engineering Physics, Mianyang 621900, Sichuan, China
全文: PDF(2595 KB)   HTML ( 19 )  
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 

以耐高温型聚酰亚胺为基体,微米碳化硼(B4C)为热中子吸收剂,采用粉体表面改性及超声湿混-热亚胺化成膜工艺成功制备了一系列B4CP/PI聚酰亚胺复合薄膜,重点探讨了不同B4C含量条件下复合薄膜的耐热性能和力学性能以及不同B4C含量、不同复合薄膜厚度条件下复合材料的热中子屏蔽性能。研究表明:采用上述工艺,B4C功能粒子在聚酰亚胺基体中可均匀分散;B4CP/PI复合薄膜的耐热性随B4C含量的增加显著提高,力学性能则呈相反趋势;所制备的B4CP/PI复合薄膜表现出优异的热中子屏蔽性能,中子透射率I/I0随复合薄膜厚度增加及B4C含量增加呈指数变化规律。据此,可通过材料结构设计,满足不同领域对该类耐高温中子防护材料的应用需求。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李晓敏
吴菊英
唐昶宇
袁萍
邢涛
张凯
梅军
黄渝鸿
关键词 聚酰亚胺碳化硼热中子辐照屏蔽热性能力学性能    
Abstract

B4CP/PI polyimide composite films with different powder contents and thicknesses were prepared by particle surface modification and wet mixing machinery-thermal imidization method, using high temperature polyimide as matrix and micro-sized boron carbide (B4C) as thermal neutron absorption material. The thermal neutron radiation shielding property, thermal stability and mechanical property of B4CP/PI polyimide composite films were mainly discussed in this paper. It is shown that the micro-sized B4C functional particles can be well dispersed in PMDA-ODA polyimide matrix, and the thermal stability of B4CP/PI polyimide composite films are significantly improved with the increase of B4C content. However, the mechanical properties of the composite films present the opposite trend; meanwhile, the B4CP/PI polyimide composite films exhibit excellent thermal neutron radiation shielding properties, and the neutron permeability I/I0 presents exponential relationship with the increasing thickness of composite and B4C filler particle content. Therefore, through structural design of the materials, the applications requirements in different fields for materials with high temperature resistant and thermal neutron radiation shielding properties can be met.

Key wordspolyimide    boron carbide    thermal neutron radiation shielding    thermal stability    mechanical property
收稿日期: 2016-09-09      出版日期: 2018-03-20
中图分类号:  TB332  
  TB35  
  X946  
基金资助:国家863计划基金项目(2015AA034004);中国工程物理研究院双百人才工程基金项目(ZX20150402);四川省科技支撑计划基金项目(2015GZ0068);国家青年科学基金(21404095)
通讯作者: 梅军     E-mail: meijun12@126.com
作者简介: 梅军(1963-), 男, 研究员, 研究方向:功能材料, 联系地址:四川省成都市双流区银河路596号中物院成都科学技术发展中心成都绿色能源与绿色制造中心(610200), E-mail: meijun12@126.com
引用本文:   
李晓敏, 吴菊英, 唐昶宇, 袁萍, 邢涛, 张凯, 梅军, 黄渝鸿. B4CP/PI聚酰亚胺复合薄膜耐高温及热中子辐照屏蔽性能研究[J]. 材料工程, 2018, 46(3): 48-54.
Xiao-min LI, Ju-ying WU, Chang-yu TANG, Ping YUAN, Tao XING, Kai ZHANG, Jun MEI, Yu-hong HUANG. Thermal Neutron Radiation Shielding and Thermal Properties of B4CP/PI Polyimide Composite Films. Journal of Materials Engineering, 2018, 46(3): 48-54.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.001076      或      http://jme.biam.ac.cn/CN/Y2018/V46/I3/48
Fig.1  聚酰亚胺及其B4C/PI复合薄膜红外光谱图
Fig.2  聚酰亚胺及B4Cp/PI复合薄膜XRD图谱
Fig.3  B4C粉体(a)和B4CP/PI复合薄膜(b)的显微照片
Fig.4  B4CP/PI复合薄膜表面激光共聚焦显微图
Fig.5  不同含量B4CP/PI聚酰亚胺复合薄膜热重曲线
Sample Td5/℃ Td10/℃ Ycat700℃/%
PI 534 562 57.5
10% B4CP/PI 578 600 68.2
20% B4CP/PI 590 611 73.1
30% B4CP/PI 607 623 77.8
Table 1  B4CP PI聚酰亚胺复合薄膜TGA特征数据
Fig.6  不同含量B4CP/PI聚酰亚胺复合薄膜应力-应变曲线
Sample Tensile strength/MPa Strain/%
PI 149 24.5
10% B4CP/PI 113 15.5
20% B4CP/PI 98 14.1
30% B4CP/PI 86 12.8
Table 2  B4CP/PI聚酰亚胺复合薄膜力学性能特征数据
Fig.7  B4CP /PI复合薄膜B4C含量与中子透射率关系图
Fig.8  20% B4CP /PI复合薄膜厚度与中子透射率的关系图
1 ABU-KHADER M M . Recent advances in nuclear power:a review[J]. Progress in Nuclear Energy, 2009, 51 (2): 225- 235.
doi: 10.1016/j.pnucene.2008.05.001
2 CARINA H , KARL Z , PETRA K . Stability of 10B4C thin films under neutron radiation[J]. Radiation Physics and Chemistry, 2015, 113, 14- 19.
doi: 10.1016/j.radphyschem.2015.04.006
3 WANG P , TANG X , CHAI H , et al. Design, fabrication, and properties of a continuous carbon-fiber reinforced Sm2O3/polyimide gamma ray/neutron shielding material[J]. Fusion Engineering and Design, 2015, 101, 218- 225.
doi: 10.1016/j.fusengdes.2015.09.007
4 SHIN J W , LEE J W , YU S , et al. Polyethylene/boron-containing composites for radiation shielding[J]. Thermochimica Acta, 2014, 585, 5- 9.
doi: 10.1016/j.tca.2014.03.039
5 HARRISON C , WEAVER S , BERTELSEN C , et al. Polyethylene/boron nitride composites for space radiation shielding[J]. Journal of Applied Polymer Science, 2008, 109, 2529- 2538.
doi: 10.1002/(ISSN)1097-4628
6 DUAN Y H , SUN Y , PENG M J , et al. Mechanical and shielding properties of an as-cast new Pb-B shielding composite materials[J]. Advanced Materials Research, 2010, 150/151, 56- 63.
doi: 10.4028/www.scientific.net/AMR.150-151
7 ZAHRA S , AMIRMOHAMMAD B , FARHOOD Z , et al. Effect of particle size and percentages of Boron carbide on the thermal neutron radiation shielding properties of HDPE/B4C composite:experimental and simulation studies[J]. Radiation Physics and Chemistry, 2016, 127, 182- 187.
doi: 10.1016/j.radphyschem.2016.06.027
8 ÖZDEMIRT, GVNGÖRA, REYHANCANÍA. Flexible neutron shielding composite material of EPDM rubber with boron trioxide:mechanical, thermal investigations and neutron shielding tests[J]. Radiation Physics and Chemistry, 2017, 131, 7- 12.
9 ZHANG X L , YANG M T , ZHANG X M . Enhancing the neutron shielding ability of polyethylene composites with an alternating multi-layered structure[J]. Composites Science and Technology, 2017, 150, 16- 23.
doi: 10.1016/j.compscitech.2017.06.007
10 HONF J P , YOON S W , HWANF T S , et al. Interphase control of boron nitride/epoxy composites for high thermal conductivity[J]. Korea-Australia Rheology Journal, 2010, 22 (4): 259- 264.
11 CHEN Y , HAN D H , OUYANG W , et al. Fabrication and evaluation of polyamide 6 composites with electrospun polyimide nanofibers as skeletal framework[J]. Composites:Part B, 2012, 43 (5): 2382- 2388.
doi: 10.1016/j.compositesb.2011.11.071
12 CAEINA H , KARL Z , PETRA K , et al. Stability of 10B4C thin films under neutron radiation[J]. Radiation Physics and Chemistry, 2015, 113, 14- 19.
doi: 10.1016/j.radphyschem.2015.04.006
13 BUYUK B , TUGRUL A B . Gamma and neutron attenuation behaviors of boron carbide-silicon carbide composite[J]. Annuals of Nuclear Energy, 2014, 71, 46- 51.
doi: 10.1016/j.anucene.2014.03.026
14 李哲夫, 薛向欣. 含硼矿物复合材料对1keV, 1eV及0.0253eV能量中子的屏蔽性能[J]. 东北大学学报(自然科学版), 2011, 23 (12): 1716- 1720.
14 LI Z F , XUE X X . Shielding properties of boron-containing ores composites for 1keV, 1eV and 0.0253eV neutron[J]. Journal of Northeastern University (Natural Science), 2011, 23 (12): 1716- 1720.
15 HARRISON C , WEAVER S , BERTELSEN C , et al. Polyethylene/boron nitride composites for space radiation shielding[J]. Journal of Applied Polymer Science, 2008, 109 (4): 2529- 2538.
doi: 10.1002/(ISSN)1097-4628
16 戴龙泽. B4C/Al中子吸收复合材料的制备、性能测试与蒙特卡罗模拟[D]. 南京: 南京航空航天大学, 2014.
16 DAI L Z. The produce, property research and monte-carlo simulation of B4C/Al neutron absorber composites[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014.
17 JIANG Q , WANG X , ZHU Y T , et al. Mechanical, electrical and thermal properties of aligned carbon nanotube/polyimide composites[J]. Composites:Part B, 2014, 56, 408- 412.
doi: 10.1016/j.compositesb.2013.08.064
18 SEYHUN K , PELIN G , EMEK M D , et al. Characterization of boron carbide particles and its shielding behavior against neutron radiation[J]. Energy Conversion and Management, 2013, 72, 39- 44.
doi: 10.1016/j.enconman.2012.08.026
19 ÇAKMAKÇIE, GVNGÖRA. Preparation and characterization of flame retardant and proton conducting boron phosphate/polyimide composites[J]. Polymer Degradation and Stability, 2013, 98, 927- 933.
20 CARINA H , KARL Z , PETRA K , et al. Stability of 10B4C thin films under neutron radiation[J]. Radiation Physics and Chemistry, 2015, 113, 14- 19.
doi: 10.1016/j.radphyschem.2015.04.006
21 HUANG Y C , LO T Y , CHAO C G , et al. Anti-corrosion characteristics of polyimide/h-boron nitride composite films with different polymer configurations[J]. Surface & Coating Technology, 2014, 260, 113- 117.
22 SHIN J W , LEE J W , YU S , et al. Polyethylene/boron-containing composites for radiation shielding[J]. Thermochimica Acta, 2014, 585, 5- 9.
doi: 10.1016/j.tca.2014.03.039
23 徐正彬, 贾梦秋. 碳化硼的改性及其在有机硅树脂中的应用[J]. 北京化工大学学报, 2007, 34 (增刊2): 52- 56.
23 XU Z B , JIA M Q . Modification of boron carbide and its application in the silicon coating[J]. Journal of Beijing University of Chemical Technology, 2007, 34 (Suppl 2): 52- 56.
24 LI T L , HSU S L . Enhanced thermal conductivity of polyimide films via a hybrid of micro-and nano-sized boron nitride[J]. Journal of Physical Chemistry B, 2010, 114, 6825- 6829.
doi: 10.1021/jp101857w
25 MVLAZIM Y , KIZILKAYA C , KAHRAMAN M V . Thermal and neutron shielding properties of 10B2O3/polyimide hybrid materials[J]. Polymer Bulletin, 2011, 67, 1741- 1750.
doi: 10.1007/s00289-011-0481-4
26 BUYUK B , TUGRUL A B . Gamma and neutron attenuation behaviors of boron carbide-silicon carbide composite[J]. Annuals of Nuclear Energy, 2014, 71, 46- 51.
doi: 10.1016/j.anucene.2014.03.026
27 ZHANG G H , LIU J M , XUE Z H , et al. Measurement of 10B content in thin-film 10B samples[J]. Applied Radiation & Isotopes, 2011, 69 (6): 858- 861.
28 LAVELLE C M , DEACON R M , HUSSEY D S , et al. Characterization of boron coated vitreous carbon foam for neutron detection[J]. Nuclear Instruments and Methods in Physics Research A, 2013, 729 (3): 346- 355.
29 KIPCAK A S , GURSES P G , DERUN E M , et al. Characterization of boron carbide particles and its shielding behavior against neuron radiation[J]. Energy Conversion and Management, 2013, 72, 39- 44.
doi: 10.1016/j.enconman.2012.08.026
[1] 杨建国, 沈伟健, 李华鑫, 贺艳明, 闾川阳, 郑文健, 马英鹤, 魏连峰. 氮掺杂导电碳化硅陶瓷研究进展[J]. 材料工程, 2022, 50(9): 18-31.
[2] 唐婧缘, 龙依婷, 黄旭, 蒲琳钰. 核-双壳BT@TiO2@PDA纳米粒子的制备及其复合薄膜的介电性能[J]. 材料工程, 2022, 50(9): 59-69.
[3] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[4] 林方成, 程鹏明, 张鹏, 刘刚, 孙军. Al-Zn-Mg系铝合金的微合金化研究进展[J]. 材料工程, 2022, 50(8): 34-44.
[5] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[6] 倪洪江, 邢宇, 戴霄翔, 李军, 张代军, 陈祥宝. 航空发动机用聚酰亚胺树脂基复合材料固化工艺及热稳定性能[J]. 材料工程, 2022, 50(7): 102-109.
[7] 杨新岐, 元惠新, 孙转平, 闫新中, 赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能[J]. 材料工程, 2022, 50(7): 128-138.
[8] 杨湘杰, 郑彬, 付亮华, 杨颜. 稀土Y和Sm对AZ91D镁合金组织与性能的影响[J]. 材料工程, 2022, 50(7): 139-148.
[9] 李正兵, 李海涛, 郭义乐, 陈益平, 程东海, 胡德安, 高俊豪, 李东阳. Co颗粒含量对SnBi/Cu接头微观组织与性能的影响[J]. 材料工程, 2022, 50(7): 149-155.
[10] 车倩颖, 贺卫卫, 李会霞, 程康康, 王宇. 电子束选区熔化成形Ti2AlNb合金微观组织与性能[J]. 材料工程, 2022, 50(7): 156-164.
[11] 宋刚, 李传瑜, 郎强, 刘黎明. 电弧电流对AZ31B/DP980激光诱导电弧焊接接头成形及力学性能的影响[J]. 材料工程, 2022, 50(6): 131-137.
[12] 王涛, 武传松. 超声对铝/镁异质合金搅拌摩擦焊接成形的影响[J]. 材料工程, 2022, 50(5): 20-34.
[13] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[14] 陆腾轩, 孟晓燕, 李狮弟, 邓欣. 硬质合金粉末挤出打印中增材制造工艺及其显微结构[J]. 材料工程, 2022, 50(5): 147-155.
[15] 贾耀雄, 许良, 敖清阳, 张文正, 王涛, 魏娟. 不同热氧环境对T800碳纤维/环氧树脂复合材料力学性能的影响[J]. 材料工程, 2022, 50(4): 156-161.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn