Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (6): 97-103    DOI: 10.11868/j.issn.1001-4381.2016.001092
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
GCr15轴承钢热处理过程中碳化物的析出与演变行为
马超, 罗海文
北京科技大学 冶金与生态工程学院, 北京 100083
Precipitation and Evolution Behavior of Carbide During Heat Treatments of GCr15 Bearing Steel
MA Chao, LUO Hai-wen
School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(6892 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用定量金相的方法研究GCr15轴承钢在球化退火、奥氏体化淬火、低温回火等不同热处理工序后其碳化物的演变行为,通过ThermoCalc软件进行数值模拟计算分析碳化物尺寸和成分对其在奥氏体化时固溶动力学的影响。结果表明:球化退火处理后形成的碳化物粒子尺寸呈多峰分布,奥氏体化和回火后的碳化物粒子尺寸分布为单峰分布,奥氏体化后碳化物中Cr含量略有增加;Cr含量高的碳化物粒子具有较大尺寸;球化退火形成的碳化物在奥氏体化时大量固溶形成了富碳奥氏体,淬火后转变为高碳马氏体并导致高硬度;奥氏体化时碳化物固溶发生Cr的配分导致碳化物中Cr含量增加;直径200nm的碳化物即使其Cr含量接近基体成分,也不能在奥氏体化热处理时完全固溶,未溶的碳化物颗粒将影响后续回火过程的碳化物析出。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马超
罗海文
关键词 碳化物热处理固溶热力学动力学计算    
Abstract:The evolution behavior of carbides in GCr15 bearing steels after spheroidization annealing, austenitization quenching and low temperature tempering was investigated by the method of quantitative metallography. Numerical simulations on the dissolution kinetics of carbide size and composition during austenitization were performed by ThermoCalc software. The results indicate that the carbide particles formed after spheroidization annealing have a multimodal distribution whilst their size distribution changes to have a single peak after austenitization and tempering, and Cr content increases slightly after austenitization; the carbide particles appear to have larger size with higher Cr content; C rich austenite is formed during austenitization through solid solution by carbides after spheroidization annealing, and then high carbon martensite is formed after quenching and results in the high hardness; Cr atoms can partition from austenite to carbide during the dissolution of carbide, lead to the increasing Cr content of rest carbide particles; the numerical simulations indicate that the carbide particles with the diameter of 200nm cannot completely be dissolved during austenitization even if its Cr content is close to the nominal Cr content of steel, and the undissolved ones may affect the precipitation of carbides during the subsequent tempering.
Key wordscarbide    heat treatment    dissolution    thermodynamics    kinetic calculation
收稿日期: 2016-09-12      出版日期: 2017-06-20
中图分类号:  TG142.1  
通讯作者: 罗海文(1972-),男,博士,教授,现从事先进钢铁材料研发,联系地址:北京市海淀区学院路30号北京科技大学冶金与生态工程学院(100083),E-mail:luohaiwen@ustb.edu.cn     E-mail: luohaiwen@ustb.edu.cn
引用本文:   
马超, 罗海文. GCr15轴承钢热处理过程中碳化物的析出与演变行为[J]. 材料工程, 2017, 45(6): 97-103.
MA Chao, LUO Hai-wen. Precipitation and Evolution Behavior of Carbide During Heat Treatments of GCr15 Bearing Steel. Journal of Materials Engineering, 2017, 45(6): 97-103.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.001092      或      http://jme.biam.ac.cn/CN/Y2017/V45/I6/97
[1] 王奇, 李晓源, 时捷, 等. 等温球化退火温度对高碳钢组织的影响[J]. 金属热处理, 2016, 41(11):88-92. WANG Q, LI X Y, SHI J, et al. Effect of isothermal spheroidizing annealing temperature on microstructure of high carbon steel[J]. Heat Treatment of Metals, 2016, 41(11):88-92.
[2] 余斌, 李晓源, 时捷,等. 等温球化退火对某高碳钢中碳化物的影响[J]. 金属热处理, 2016,41(1):91-93. YU B, LI X Y, SHI J, et al. Effect of isothermal spheroidizing annealing on carbide in high carbon steel[J]. Heat Treatment of Metals, 2016,41(1):91-93.
[3] 黄超, 张丹, 王威,等. 加热温度和保温时间对轴承钢GCr15SiMn碳化物的影响[J].材料热处理学报, 2015, 36(4):156-161. HUANG C, ZHANG D, WANG W, et al. Effect of heating temperature and holding time on carbide of GCr15SiMn bearing steel[J]. Transactions of Materials and Heat Treatment, 2015, 36(4):156-161.
[4] 宋雯雯, 闵永安, 吴晓春. H13钢中的碳化物分析及其演变规律研究[J]. 材料热处理学报, 2009, 30(5):122-126. SONG W W, MIN Y A, WU X C. Study on carbides and their evolution in H13 hot work steel[J]. Transactions of Materials and Heat Treatment, 2009, 30(5):122-126.
[5] 张朝磊, 刘翔, 张丹, 等. GCr15球化珠光体组织在热处理过程中碳化物的遗传性[J]. 材料热处理学报, 2014, 35(增刊1):45-48. ZHANG C L, LIU X, ZHANG D, et al. Carbide inheritance of pearlite spheroidization during heat treatment process in GCr15 steel[J]. Transactions of Materials and Heat Treatment, 2014, 35(Suppl 1):45-48.
[6] 柴泽, 巴发海. GCr15轴承钢中碳化物的定量分析[J]. 机械工程材料, 2015, 39(1):42-45. CHAI Z, BA F H. Quantitative analysis for carbide content in GCr15 bearing steel[J]. Materials for Mechanical Engineering, 2015, 39(1):42-45.
[7] BHADESHIA H K D H. Steels for bearings[J]. Progress in Materials Science, 2012, 57(2):268-435.
[8] YAMAMOTO A, INOUE K, TSUBAKINO H. Analysis of spherical carbides formed in chromium added hypereutectoid bearing steels[J]. Materials Science Forum, 2007, 539-543:4866-4871.
[9] 马宝国, 杨洪波, 朱伏先, 等. GCr15轴承钢中渗碳体的奥氏体化行为研究[J].热加工工艺, 2009, 38(20):5-7. MA B G, YANG H B, ZHU F X, et al. Study on austenitizing behaviors of cementite in GCr15 bearing steel[J]. Hot Working Technology, 2009, 38(20):5-7.
[10] 杨洪波, 王快社, 王庆娟, 等. GCr15轴承钢渗碳体球化的长大机制[J]. 材料热处理学报, 2012, 33(8):79-83. YANG H B, WANG K S, WANG Q J, et al. Nano-scale carbide precipitation in GCr15 bearing steel during heat treatment[J]. Transactions of Materials and Heat Treatment, 2012, 33(8):79-83.
[11] 李辉, 米振莉, 武会宾,等. GCr15轴承钢热处理中纳米级碳化物的析出[J]. 材料热处理学报, 2014, 35(增刊1):34-38. LI H, MI Z L, WU H B, et al. Precipitation of nanometer carbide in heat treatment of GCr15 bearing steel[J]. Transactions of Materials and Heat Treatment, 2014, 35(Suppl 1):34-38.
[12] 孙艳坤. GCr15钢棒材热变形后冷却工艺对显微组织的影响[J]. 金属热处理, 2011, 36(12):9-11. SUN Y K. Effect of cooling process after hot deformation on microstructure of GCr15 steel bar[J]. Heat Treatment of Metals, 2011, 36(12):9-11.
[13] 许磊, 陈瑜, 韩彦光, 等. GCr15轴承钢球化退火研究现状[J]. 热加工工艺, 2013, 42(14):11-14. XU L, CHEN Y, HAN Y G, et al. Research on spheroidization of GCr15 bearing steel[J]. Hot Working Technology, 2013, 42(14):11-14.
[14] 郭林, 霍向东, 董峰. 奥氏体化时间对GCr15轴承钢球化组织的影响[J]. 钢铁钒钛, 2013, 34(1):99-103. GUO L,HUO X D,DONG F. Effect of austenitizing time on spheroidized microstructure of bearing steel GCr15[J]. Iron Steel Vanadium Titanium, 2013, 34(1):99-103.
[15] ZHANG C, ZHOU L, LIU Y. Heredity in the microstructure and mechanical properties of hot-rolled spring steel wire 60Si2MnA during heat treatment process[J]. Journal of Materials Science & Technology, 2013, 29(1):82-88.
[16] XU L, XING J, WEI S, et al. Investigation on wear behaviors of high-vanadium high-speed steel compared with high-chromium cast iron under rolling contact condition[J]. Materials Science and Engineering:A, 2006, 434(1-2):63-70.
[17] HWANG K C, LEE S, HUI C L. Effects of alloying elements on microstructure and fracture properties of cast high speed steel rolls:Part Ⅱ. Fracture behavior[J]. Materials Science and Engineering:A, 1998, 254(1-2):296-304.
[18] REED R C, ROOT J H. Determination of the temperature dependence of the lattice parameters of cementite by neutron diffraction[J].Scripta Materialia, 1997, 38(1):95-99.
[1] 郭军, 杨卯生, 卢德宏, 李新宇. Cr4Mo4V轴承钢旋转弯曲疲劳寿命及疲劳裂纹萌生机理[J]. 材料工程, 2019, 47(7): 134-143.
[2] 杨胶溪, 贾无名, 王欣, 文强, 张晏玮, 柏广海, 王荣山. 激光熔凝处理对Zr-1Nb核燃料包壳组织和性能的影响[J]. 材料工程, 2018, 46(8): 120-126.
[3] 蔡建明, 田丰, 刘东, 李娟, 弭光宝, 叶俊青. 600℃高温钛合金双性能整体叶盘锻件制备技术研究进展[J]. 材料工程, 2018, 46(5): 36-43.
[4] 徐勇, 靳鹏飞, 田亚强, 张士宏, 王礼良, 曾一畔. 铝合金局部热处理技术及其在板材成形中的应用发展现状[J]. 材料工程, 2018, 46(5): 44-55.
[5] 刘秀波, 周仲炎, 翟永杰, 乔世杰, 徐江宁, 罗迎社, 涂溶. 热处理对激光熔覆钛基复合涂层组织和微动磨损性能的影响[J]. 材料工程, 2018, 46(5): 79-85.
[6] 吴闪, 朱延俊, 赵梦媛, 解昊, 杨星, 边凌锋, 孟彬. Co元素掺杂对CeO2基固态电解质导电行为的影响[J]. 材料工程, 2018, 46(5): 133-138.
[7] 杨守杰, 邢清源, 于海军, 王玉灵, 戴圣龙. 800MPa级Al-Zn-Mg-Cu系合金[J]. 材料工程, 2018, 46(4): 82-90.
[8] 邢如飞, 许星元, 黄双君, 王磊, 周松, 许良. 激光沉积修复TA15钛合金微观组织及力学性能[J]. 材料工程, 2018, 46(12): 144-150.
[9] 郭瑞华, 李振亮, 李慧琴, 樊易, 刘玉乾. 热处理对Mg-5Sm-0.6Zn-0.5Zr合金微观结构与力学性能的影响[J]. 材料工程, 2018, 46(11): 125-133.
[10] 陈红梅, 祝玉林, 王松. 后热处理对Cf/ZrC复合材料微观结构及性能的影响[J]. 材料工程, 2017, 45(8): 43-48.
[11] 孙世清. 无碳化物贝氏体钢渗碳后的深冷处理[J]. 材料工程, 2017, 45(5): 94-99.
[12] 崔斌, 杨柳, 邓运来, 谭军, 张骞, 王婷. 添加元素对Mg-3Si合金组织影响[J]. 材料工程, 2017, 45(3): 95-101.
[13] 陈敏, 叶凌英, 孙大翔, 杨涛, 王国玮, 张新明. 升温速率对7B04铝合金板材晶粒组织和超塑性的影响[J]. 材料工程, 2017, 45(3): 112-118.
[14] 李贺, 柴丽华, 马腾飞, 陈子勇. 高温熔体反应法制备Al-5Ti-1B细化剂[J]. 材料工程, 2017, 45(2): 39-45.
[15] 王天佑, 王小蒙, 赵子华, 张峥. 热等静压及恢复热处理工艺对DZ125蠕变损伤的影响[J]. 材料工程, 2017, 45(2): 88-95.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn