Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (1): 114-118    DOI: 10.11868/j.issn.1001-4381.2016.001100
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于光催化性能的Cu-Ce/TiO2湿性能
张浩
安徽工业大学 建筑工程学院, 安徽 马鞍山 243032
Cu-Ce/TiO2 Moisture Performance Based on Photocatalytic Performance
ZHANG Hao
School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan 243032, Anhui, China
全文: PDF(1303 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 以Cu(NO32·3H2O和Ce(NO33·6H2O为改性剂,采用溶胶-凝胶法制备Cu-Ce/TiO2。探讨Cu-Ce负载量、Cu与Ce摩尔比和煅烧温度对Cu-Ce/TiO2性能的影响。利用SEM,LPSA,BET和UV-Vis测试Cu-Ce/TiO2的表面形貌、粒度分布、孔结构和光学性能。结果表明:Cu-Ce负载量3%、Cu与Ce摩尔比1:1、煅烧温度500℃时,制备的Cu-Ce/TiO2具有良好的光催化性能与湿性能。Cu-Ce/TiO2呈近似球体,具有较好的均匀化和分散性,其粒径分布为1202.98~5364.48nm,其中d50为2437.57nm。Cu-Ce/TiO2具有狭小瓶颈的"墨水瓶"型孔结构,其比表面积为105.55m2/g,孔体积为0.1200~0.1246mL/g,平均孔直径为3.44~4.02nm。Cu-Ce掺杂促使Cu-Ce/TiO2内部形成新的能级,提高捕获e-和h+的能力,增强光子的利用效率,促使吸收边带发生红移。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张浩
关键词 Cu-Ce掺杂光-湿性能TiO2湿性能光催化性能    
Abstract:Cu(NO3)2·3H2O and Ce(NO3)3·6H2O were used as modifier to make Cu-Ce/TiO2 by sol-gel method. The influences of Cu-Ce loading capacity, Cu and Ce molar ratio, sintering temperature on Cu-Ce/TiO2 performance were explored. Then, surface morphology, particle size distribution, pore structure and optical property of Cu-Ce/TiO2 were characterized by SEM,LPSA,BET and UV-Vis, respectively. The results show that:prepared Cu-Ce/TiO2 shows good photocatalytic-moisture performance when Cu-Ce loading capacity is 3%, Cu and Ce molar ratio is 1:1 and sintering temperature is at 500℃. Cu-Ce/TiO2 presents approximate sphere, with better uniformity and dispersibility and the particle size distribution is 1202.98-5364.48nm, with d50 2437.57nm. Cu-Ce/TiO2 has pore structure, approximate to an "ink bottle" with a narrow bottleneck, with the specific surface area 105.55m2/g, hole size 0.1200-0.1246mL/g, and average pore diameter 3.44-4.02nm. Cu-Ce doping promotes to form a new energy level inside Cu-Ce/fiO2 so as to improve the ability to capture e- and h+, enhance the efficiency of photon utilization, and promote red shift of absorption sideband.
Key wordsCu-Ce doping    photocatalytic-moisture performance    TiO2    moisture performance    photocatalytic performance
收稿日期: 2016-09-12      出版日期: 2018-01-18
中图分类号:  X511  
通讯作者: 张浩(1982-),男,博士,副教授,从事环保型建筑节能材料研究,联系地址:安徽省马鞍山市雨山区安徽工业大学(东校区)建筑工程学院(243032),E-mail:fengxu19821018@163.com     E-mail: fengxu19821018@163.com
引用本文:   
张浩. 基于光催化性能的Cu-Ce/TiO2湿性能[J]. 材料工程, 2018, 46(1): 114-118.
ZHANG Hao. Cu-Ce/TiO2 Moisture Performance Based on Photocatalytic Performance. Journal of Materials Engineering, 2018, 46(1): 114-118.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.001100      或      http://jme.biam.ac.cn/CN/Y2018/V46/I1/114
[1] FUJISHIMA A, HONDO K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358):37-38.
[2] JING L Q, XIN B F, YUAN F L, et al. Effects of surface oxygen vacancies on photophysical and photochemical processes of Zn-doped TiO2 nanoparticles and their relationships[J]. The Journal of Physical Chemistry B, 2006, 110(36):17860-17865.
[3] ZHAO H M, CHEN Y, QUAN X, et al. Preparation of Zn-doped TiO2 nanotubes electrode and its application in pentachlorophenol photoelectrocatalytic degradation[J]. Chinese Science Bull, 2007, 52(11):1456-1461.
[4] TOJO S, TACHIKAWA T, FUJTSUKA M, et al. Iodine-doped TiO2 photocatalysts:correlation between band structure and mechanism[J]. Journal of Physical Chemistry C, 2008, 112(38):14948-14954.
[5] ZHAO D, PENG T Y, LIU M, et al. Fabrication, characterization and photocatalytic activity of Gd3+-doped titania nanoparticles with mesostructure[J]. Microporous and Mesoporous Materials, 2008, 114(1/2/3):166-174.
[6] HAMAL D B, KLABUNDE K J. Synthesis, characterization, and visible light activity of new nanoparticle photocatalysis based on silver, carbon and sulfur-doped TiO2[J]. Journal of Colloid and Interface Science, 2007, 311(2):514-522.
[7] YU J G, ZHANG L J, BEI C. Hydrothermal preparation and photocatalytic activity of hierarchically sponge-like macro-/mesoporous titania[J]. Journal of Physical Chemistry C, 2007, 111(28):10582-10589.
[8] 陈其凤,姜东,徐耀,等. 溶胶-凝胶-水热法制备Ce-Si/TiO2及其可见光催化性能[J].物理化学学报,2009, 25(4):617-623. CHEN Q F, JIANG D, XU Y, et al. Visible region photocatalysis of Ce-Si/TiO2 synthesized using sol-gel-hydrothermal method[J]. Acta Physico-Chimica Sinica, 2009, 25(4):617-623.
[9] 王瑞芬,王福明,宋金玲,等. RE-B共掺杂片层TiO2的合成及其光催化性能[J].物理化学学报,2016, 32(2):536-542. WANG R F, WANG F M, SONG J L, et al. Synthesis and photocatalytic activities of rare earth-boron Co-doped slice layer TiO2[J]. Acta Physico-Chimica Sinica, 2016, 32(2):536-542.
[10] YU J G, WANG G H, CHENG B, et al. Effects of hydrothermal temperature and time on the photocatalytic activity and microstructures of bimodal mesoporous TiO2 powders[J]. Applied Catalysis B, 2007, 69(3):171-180.
[11] 刘阳龙,郑玉婴,尚鹏博. 铕掺杂的TiO2空心微球的制备及光催化性能[J].无机材料学报,2015, 30(7):699-705. LIU Y L, ZHENG Y Y, SHANG P B. Preparation, characterization and photocatalytic property of Eu-doped TiO2 hollow microspheres[J]. Journal of Inorganic Material, 2015, 30(7):699-705.
[12] 尚建丽,麻向龙,张磊,等, 多孔载体相变材料的热湿综合性能[J].浙江大学学报(工学版),2016, 50(5):879-886. SHANG J L, MA X L, ZHANG L, et al. Comprehensive properties of temperature and humidity of porous carrier phase change material[J]. Journal of Zhejiang University (Engineering Science), 2016, 50(5):879-886.
[13] 张浩,赵江平,王智懿. Cu-TiO2光催化降解甲醛气体的研究及应用[J].新型建筑材料,2009, 3(9):78-81. ZHANG H, ZHAO J P, WANG Z Y. Study and application of photocatalytic degradation of formaldehyde by Cu-TiO2[J]. New Building Material, 2009, 3(9):78-81.
[14] 张浩,刘秀玉,朱庆明,等. Cu掺杂TiO2光催化降解室内甲醛气体的实验研究[J].过程工程学报,2012, 12(4):696-701. ZHANG H, LIU X Y, ZHU Q M, et al. Experimental study on photocatalytic degradation of indoor formaldehyde gas over copper-doped titania[J]. Chinese Journal of Process Engineering, 2012, 12(4):696-701.
[15] 张浩,钱付平. Ce掺杂TiO2催化剂的光催化性能[J].过程工程学报,2011, 11(3):514-518. ZHANG H, QIAN F P. Photocatalytic property of TiO2 catalyst doped with cerium[J]. Chinese Journal of Process Engineering, 2011, 11(3):514-518.
[16] 张浩,何兆芳,黄新杰. Cu-Ce/TiO2的制备及其在室内甲醛气体中的光催化性能[J]. 稀土,2014, 35(6):72-78. ZHANG H, HE Z F, HUANG X J. Preparation and indoor formaldehyde photocatalytic property of Cu-Ce/TiO2[J]. Chinese Rare Earths, 2014, 35(6):72-78.
[17] 张浩,刘守城,胡义,等. 基于正交设计与BP神经网络优化制备Cu-Ce/TiO2的预测模型[J]. 稀土,2015, 36(2):72-77. ZHANG H, LIU S C, HU Y, et al. Predicition model for optimizing preparation of Cu-Ce/TiO2 based on orthogonal design and back-propagation neural network[J]. Chinese Rare Earths, 2015, 36(2):72-77.
[1] 李曦. 二维和零维纳米材料协同增强的高性能纳米复合材料[J]. 材料工程, 2019, 47(4): 47-55.
[2] 权月, 尹杰, 王园园, 包斯元, 鲁雄, 冯波, 周杰. 暴露高活性晶面的TiO2纳米管的制备及生物活性[J]. 材料工程, 2019, 47(4): 97-104.
[3] 周铁路, 刘会娥, 陈爽, 丁传芹, 齐选良. 诱导助剂对石墨烯负载的TiO2颗粒分布、结构和光催化活性的影响[J]. 材料工程, 2018, 46(8): 43-50.
[4] 王鹏, 张瑞英, 韩小伟, 刘天丽, 杨森. 不同压制压力制备的Al-TiO2-C细化剂对ZL101合金细化效果的影响[J]. 材料工程, 2018, 46(8): 84-90.
[5] 宗志芳, 杨麟, 张浩, 熊磊. 环境协调型Ce-La/TiO2复合材料的制备及光-湿-热性能[J]. 材料工程, 2018, 46(5): 145-150.
[6] 张曼莉, 邱长军, 蒋艳林, 郑文权, 夏琰. 激光原位合成Al2O3-TiO2复合陶瓷涂层组织结构与性能[J]. 材料工程, 2018, 46(2): 57-65.
[7] 张相辉. La掺杂改性Bi2WO6纳米材料的制备及其光催化性能[J]. 材料工程, 2018, 46(11): 57-62.
[8] 曲家惠, 陈金垒, 李红, 张文杰. 溶胶-凝胶法制备xLa-3%In-TiO2光催化材料[J]. 材料工程, 2017, 45(8): 14-18.
[9] 黄凤萍, 崔梦丽, 张双, 郭宇煜, 王帅, 李缨. 高硅氧纤维负载纳米Dy/TiO2薄膜的制备及性能[J]. 材料工程, 2017, 45(7): 66-70.
[10] 余煜玺, 朱孟伟. 高球形度、高比表面积SiO2/TiO2气凝胶小球的制备和表征[J]. 材料工程, 2017, 45(2): 7-11.
[11] 胡志海, 江国栋, 熊剑, 朱星, 袁颂东. TiO2-NTs/rGO复合材料的制备及电化学性能[J]. 材料工程, 2017, 45(12): 93-98.
[12] 曾斌, 陈小华, 汪次荣. 石墨烯负载硫化锌/硫化铜异质结的制备及光催化性能[J]. 材料工程, 2017, 45(12): 99-105.
[13] 韩小伟, 张瑞英, 王鹏. Al-TiO2-C晶粒细化剂对工业纯铝细化效果的影响[J]. 材料工程, 2017, 45(10): 65-70.
[14] 刘淑玲, 韩晓莉, 仝建波. Ag/InP复合材料的制备、表征及其性能[J]. 材料工程, 2017, 45(10): 18-22.
[15] 梁银, 李朋, 裴旺, 段晋辉, 黄峰, 赵昆渝. 阳极氧化疏松钛膜制备高光催化活性的透明TiO2纳米多孔涂层[J]. 材料工程, 2016, 44(7): 99-106.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn