Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (12): 112-125    DOI: 10.11868/j.issn.1001-4381.2016.001102
  综述 本期目录 | 过刊浏览 | 高级检索 |
3D打印石墨烯制备技术及其在储能领域的应用研究进展
王楠, 燕绍九, 彭思侃, 陈翔, 戴圣龙
中国航发北京航空材料研究院 石墨烯及应用研究中心, 北京 100095
Research Progress on 3D Printed Graphene Materials Synthesis Technology and Its Application in Energy Storage Field
WANG Nan, YAN Shao-jiu, PENG Si-kan, CHEN Xiang, DAI Sheng-long
Research Center of Graphene Applications, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
全文: PDF(4983 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 石墨烯优异的力学和物理性能使其成为理想的储能材料。因结构精确可控,易实现规模化制备,3D打印石墨烯材料有望在储能领域得到广泛应用。本文全面综述了3D打印石墨烯制备技术及其在储能领域的应用研究进展。石墨烯墨水的黏度和可打印性是实现石墨烯3D打印的制约因素。实现工艺简单、浓度可控、无黏结剂石墨烯墨水的规模化打印将成为3D打印石墨烯制备技术未来的研究热点。石墨烯超级电容器、锂硫电池、锂离子电池等储能元件一体化打印成型是3D打印石墨烯在储能领域应用的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王楠
燕绍九
彭思侃
陈翔
戴圣龙
关键词 3D打印石墨烯储能超级电容器锂离子电池    
Abstract:Graphene is an ideal material for energy storage application as its excellent mechanical and physical properties. 3D printed graphene materials will be widely applied in energy storage field for its precisely controllable structure and it is easy to realize large-scale preparation. In this paper, the progress of 3D printed graphene materials synthesis technology and its application in energy storage field were reviewed. The viscosity and printability of graphene ink are key factors for realizing graphene 3D printing. Scalable preparation of graphene ink with facile process, controllable concentration and additive free will be the research focus of graphene 3D printing technologies in the future. The integrated printing of graphene energy storage devices such as graphene supercapacitor, lithium-sulfur battery and lithium ion battery is the development direction in this area.
Key words3D printing    graphene    energy storage    supercapacitor    lithium ion battery
收稿日期: 2016-09-14      出版日期: 2017-12-19
中图分类号:  O613.71  
通讯作者: 燕绍九(1980-),男,高级工程师,博士,主要从事磁性材料及石墨烯应用方面的研究工作,联系地址:北京市81信箱72分箱(100095),E-mail:shaojiuyan@126.com     E-mail: shaojiuyan@126.com
引用本文:   
王楠, 燕绍九, 彭思侃, 陈翔, 戴圣龙. 3D打印石墨烯制备技术及其在储能领域的应用研究进展[J]. 材料工程, 2017, 45(12): 112-125.
WANG Nan, YAN Shao-jiu, PENG Si-kan, CHEN Xiang, DAI Sheng-long. Research Progress on 3D Printed Graphene Materials Synthesis Technology and Its Application in Energy Storage Field. Journal of Materials Engineering, 2017, 45(12): 112-125.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.001102      或      http://jme.biam.ac.cn/CN/Y2017/V45/I12/112
[1] NOVOSELOV K S,GEIM A K,MOROZOV S V,et al.Electric field effect in atomically thin carbon films[J].Science,2004,306(5696):666-669.
[2] GEIM A K,NOVOSELOV K S.The rise of graphene[J].Nature Materials,2007,6(3):183-191.
[3] SINGH V,JOUNG D,ZHAI L,et al.Graphene based materials:past,present and future[J].Progress in Materials Science,2011,56:1178-1271.
[4] CHAE H K,SIBERIO-PÉREZ D Y,KIM J,et al.A route to high surface area,porosity and inclusion of large molecules in crystals[J].Nature,2004,427(6974):523-527.
[5] BOLOTINA K I,SIKESB K J,JIANG Z,et al.Ultrahigh electron mobility in suspended graphene[J].Solid State Communications,2008,146:351-355.
[6] WANG H B,MAIYALAGAN T,WANG X.Review on recent progress in nitrogen-doped graphene:synthesis,characterization,and its potential applications[J].ACS Catalysis,2012,2(5):781-794.
[7] CHOI W,LAHIRI I,SEELABOYINA R,et al.Synthesis of graphene and its applications:a review[J].Critical Reviews in Solid State and Materials Sciences,2010,35:52-71.
[8] BROWNSON D A C,KAMPOURIS D K,BANKS C E.An overview of graphene in energy production and storage applications[J].Journal of Power Sources,2011,196:4873-4885.
[9] HUANG Y,LIANG J J,CHEN Y S.An overview of the applications of graphene-based materials in supercapacitors[J].Small,2012,8(12):1805-1834.
[10] DAI L M.Functionalization of graphene for efficient energy conversion and storage[J].Accounts of Chemical Research,2012,46(1):31-42.
[11] SUN Y Q,WU Q,SHI G Q.Graphene based new energy materials[J].Energy & Environmental Science,2011(4):1113-1132.
[12] XU C H,XU B H,GU Y,et al.Graphene-based electrodes for electrochemical energy storage[J].Energy & Environmental Science,2013(5):1388-1414.
[13] STOLLER M D,PARK S J,ZHU Y W,et al.Graphene-based ultracapacitors[J].Nano Letters,2008,8(10):3498-3502.
[14] LI N,CHEN Z P,RWN W C,et al.Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates[J].Proceedings of the National Academy of Science of the United State of American,2012,109(43):17360-17365.
[15] XIA X H,CHAO D L,ZHANG Y Q,et al.Three-dimensional graphene and their integrated electrodes[J].Nano Today,2014,9(6):785-807.
[16] CHEN Z P,REN W C,GAO L B,et al.Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition[J].Nature Materials,2011,10(6):424-428.
[17] YOON J C,LEE J S,KIM S I,et al.Three-dimensional graphene nano-networks with high quality and mass production capability via precursor-assisted chemical vapor deposition[J].Science Reports,2013,3(19):1788-1795.
[18] HE Y M,CHEN W J,LI X D,et al.Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes[J].ACS Nano,2013,7(1):174-182.
[19] LEE J S,KIM S I,YOON J C,et al.Chemical vapor deposition of mesoporous graphene nanoballs for supercapacitor[J].ACS Nano,2013,7(7):6047-6055.
[20] SHI J L,TANG C,PENG H J,et al.3D mesoporous graphene:CVD self-assembly on porous oxide templates and applications in high-stable Li-S batteries[J].Small,2015,11(39):5243-5252.
[21] ZHAO B,HUANG S Y,WANG T.Hollow SnO2&Co3O4 core-shell spheres encapsulated in three-dimensional graphene foams for high performance supercapacitors and lithium-ion batteries[J].Journal of Power Sources,2015,298:83-91.
[22] BURRESS J W,GADIPELLI S,FORD J.Graphene oxide framework materials:theoretical predictions and experimental results[J].Angewandte Chemie,2010,122(47):8902-8904.
[23] WORSLEY M A,PAUZAUSKIE P J,OLSON T Y,et al.Synthesis of graphene aerogel with high electrical conductivity[J].Journal of the American Chemical Society,2010,132(40):14067-14069.
[24] CHOI B G,YANG M,HONG W H,et al.3D macroporous graphene frameworks for supercapacitors with high energy and power densities[J].ACS Nano,2012,6(5):4020-4028.
[25] ZHOU G M,PAEK E,HWANG G S,et al.Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge[J].Nature Communications,2015,6:7760-7770.
[26] SHI Q W,HOU C Y,WANG H Z,et al.Rapid formation of superelastic 3D reduced graphene oxide networks with simultaneous removal of HI utilizing NIR irradiation[J].Journal of Materials Chemistry A,2015,3(18):9882-9889.
[27] SUN H Y,XU Z,GAO C,et al.Multifunctional,ultra-flyweight,synergistically assembled carbon aerogels[J].Advanced Materials,2013,25(18):2554-2560.
[28] CHEN W F,LI S R,CHEN C H,et al.Self-assembly and embedding of nanoparticles by in situ reduced graphene for preparation of a 3D graphene/nanoparticle aerogel[J].Advanced Materials,2011,23(47):5679-5683.
[29] ZHU C,HAN Y-J T,DUOSS E B,et al.Highly compressible 3D periodic graphene aerogel microlattices[J].Nature Communication,2015,6:6962-6969.
[30] 李小丽,马剑雄,李萍,等.3D打印技术及应用趋势[J].自动化仪表,2014,35(1):1-5. LI X L,MA J X,LI P,et al.3D printing technology and its application trend[J].Process Automation Instrumentation,2014,35(1):1-5.
[31] REDDY B V,REDDY N V,GHOSH A.Fused deposition modelling using direct extrusion[J].Virtual Phys Prototyping,2007,2(1):51-60.
[32] DUL S,FAMBRI L,PEGORETTI A.Fused deposition modelling with ABS-graphene nanocomposites[J].Composites Part A:Applied Science & Manufacturing,2016,85:181-191.
[33] ZEIN I,HUTMACHER D W,TAN K C,et al.Fused deposition modeling of novel scaffold architectures for tissue engineering applications[J].Biomaterials,2002,23(4):1169-1185.
[34] MASOOD S H,SONG W Q.Development of new metal/polymer materials for rapid tooling using fused deposition modelling[J].Materials & Design,2004,25:587-594.
[35] WEI X J,LI D,JIANG W,et al.3D printable graphene composite[J].Scientific Reports,2015,5:11181.
[36] HWANG S,REYES E I,MOON K,et al.Thermo-mechanical characterization of metal/polymer composite filaments and printing parameter study for fused deposition modeling in the 3D printing process[J].Journal of Electronic Materials,2015,44(3):771-777.
[37] DAVER F,BAZE E,SHANKS R A,et al.Conductive polyolefin-rubber nanocomposites with carbon nanotubes[J].Composites:Part A,2016,80:13-20.
[38] SUNPREET S,RUPINDER S.Effect of process parameters on micro hardness of Al-Al2O3 composite prepared using an alternative reinforced pattern in fused deposition modelling assisted investment casting[J].Robotics and Computer-Integrated Manufacturing,2016,37:162-169.
[39] JAKUS A E,SECOR E B,RUTZ A L,et al.Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications[J].ACS Nano,2015,9(4):4636-4648.
[40] GARCIA-TUÑON E,BARGS S,FRANCO J,et al.Printing in three dimensions with graphene[J].Advanced Materials,2015,27(10):1688-1693.
[41] KIM J H,CHANG W S,KIM D,et al.3D printing of reduced graphene oxide nanowires[J].Advanced Materials,2015,27(1):157-161.
[42] ZHANG Q Q,ZHANG F,MEDARAMETLA S P,et al.3D printing of graphene aerogels[J].Small,2016,12(13):1-7.
[43] ZHU C,LIU T Y,QIAN F,et al.Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores[J].Nano Letter,2016,16(6):3448-3456.
[44] FU K,WANG Y B,YAN C Y,et al.Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries[J].Advanced Materials,2016,28(13):2587-2594.
[45] PIERIN G,GROTTA C,COLOMBO P,et al.Direct ink writing of micrometric SiOC ceramic structures using a preceramic polymer[J].Journal of the European Ceramic Society,2016,36(7):1589-1594.
[46] LARSON C M,CHOI J J,GALLARDO P A,et al.Direct ink writing of silicon carbide for microwave optics[J].Advanced Engineering Materials,2015,18:39-45.
[47] ZOU F,ZHAO N,FU X L.Enhanced osteogenic differentiation and biomineralization in mouse mesenchymal stromal cells on a β-TCP robocast scaffold modified with collagen nanofibers[J].RCS Advances,2016,6(28):23588-23598.
[48] FEILDEN E,BLANCA G-T E,GIULIANI F,et al.Robocasting of structural ceramic parts with hydrogel inks[J].Journal of the European Ceramic Society,2016,36:2525-2533.
[49] EQTESADI S,MOTEALLEH A,PAJARES A,et al.Improving mechanical properties of 13-93 bioactive glass robocast scaffold by poly (lactic acid) and poly (ε-caprolactone) melt in filtration[J].Journal of Non-Crystalline Solids,2016,432:111-119.
[50] EQTESADI S,MOTEALLEH A,PAJARES A,et al.Effect of milling media on processing and performance of 13-93 bioactive glass scaffolds fabricated by robocasting[J].Ceramics International,2015,41:1379-1389.
[51] DANACI S,PROTASOVA L,LEFEVERE J,et al.Efficient CO2 methanation over Ni/Al2O3 coated structured catalysts[J].Catalysis Today,2016,273:234-243.
[52] URRIOS A,PARRA-CABRERA C,BHATTACHARJEE N,et al.3D-printing of transparent bio-microfluidic devices in PEG-DA[J].Lab on A Chip,2016,16(12):2287-2294.
[53] ALESSANDRI K,FEYEUX M,GURCHENKOV B,et al.A 3D printed microfluidic device for production of functionalized hydrogel microcapsules for culture and differentiation of human neuronal stem cells[J].Lab on A Chip,2016,16(9):1593-1604.
[54] PETIT C,MAIRE E,MEILLE S,et al.CoCrMo cellular structures made by electron beam melting studied by local tomography and finite element modelling[J].Materials Characterization,2016,116:48-54.
[55] LIU Y J,LI S J,HOU W T,et al.Electron beam melted beta-type Ti-24Nb-4Zr-8Sn porous structures with high strength-to-modulus ratio[J].Journal of Materials Science & Technology,2016,32:505-508.
[56] BAUDANA G,BIAMINO S,KLÖDEN B,et al.Electron beam melting of Ti-48Al-2Nb-0.7Cr-0.3Si:feasibility investigation[J].Intermetallics,2016,73:43-49.
[57] PENG H,LIU C,GUO H B,et al.Fabrication of WCp/NiBSi metal matrix composite by electron beam melting[J].Materials Science and Engineering:A,2016,666:320-323.
[58] RAGHAVAN N,DEHOFF R,PANNALA S,et al.Modeling of heat-transfer and the influence of process parameters on tailoring the grain morphology of IN718 in electron beam additive manufacturing[J].Acta Materialia,2016,112:303-314.
[59] ALMANGOUR B,GRZESIAK D,YANG J M.Rapid fabrication of bulk-form TiB2/316L stainless steel nanocomposites with novel reinforcement architecture and improved performance by selective laser melting[J].Journal of Alloys and Compounds,2016,680:480-493.
[60] VAITHILINGAM J,PRINA E,GOODRIDGE R D,et al.Surfa-ce chemistry of Ti6Al4V components fabricated using selective laser melting for biomedical applications[J].Materials Science and Engineering:C,2016,67:294-303.
[61] REN L,MEMARZADEH K,ZHANG S Y,et al.A novel coping metal material CoCrCu alloy fabricated by selective laser melting with antimicrobial and antibiofilm properties[J].Materials Science and Engineering:C,2016,67:461-467.
[62] SUN Z J,TAN X P,TOR S B,et al.Selective laser melting of stainless steel 316L with low porosity and high build rates[J].Materials & Design,2016,104:197-204.
[63] ABOULKHAIR N T,MASKERY I,TUCK C,et al.Improving the fatigue behaviour of a selectively laser melted aluminium alloy:influence of heat treatment and surface quality[J].Materials & Design,2016,104:174-182.
[64] KANG N,CODDET P,LIAO H L,et al.Applied surface science wear behavior and microstructure of hypereutectic Al-Si alloys prepared by selective laser melting[J].Applied Surface Science,2016,378:142-149.
[65] POPOVICH A,SU V,POLOZOV,et al.Microstructure and mechanical properties of additive manufactured copper alloy[J].Materials Letters,2016,79:38-41.
[66] SUN H,HE S W,WU P,et al.A novel MgO-CaO-SiO2 system for fabricating bone scaffolds with improved overall performance[J].Materials,2016,9(4):1-12.
[67] XIE F X,HE X M,YU J H.Fabrication and characterization of porous Ti-4Mo alloy for biomedical applications[J].J Porous Mater,2016,23:783-790.
[68] SHISHKOVSKY I,YADROITSEV I,MOROZOV Y,et al.Laser-assisted synthesis in Cu-Al-Ni system and some of its properties[J].Journal of Alloys and Compounds,2016,658:875-879.
[69] VOLYANSKI I,SHISHKOVSKYI I V,YADROITSEV I,et al.Layer-by-layer laser synthesis of Cu-Al-Ni intermetallic compounds and shape memory effect[J].Inorganic Materials,2016,52(6):566-572.
[70] LIU K,SUN H J,SHI Y S,et al.Research on selective laser sintering of Kaolin-epoxy resin ceramic powders combined with cold isostatic pressing and sintering[J].Ceramics International,2016,42:10711-10718.
[71] GIRARDIN E,BARUCCA G,MENGUCCI P,et al.Biomedical Co-Cr-Mo components produced by direct metal laser sintering[J].Materials Today Proceedings,2016,3(3):889-897.
[72] CHANG K,GU D D.Direct metal laser sintering synthesis of carbon nanotube reinforced Ti matrix composites:densification,distribution characteristics and properties[J].Journal of Material Research,2016,31(2):281-291.
[73] CABRINI M,LORENZI S,PASTORE T,et al.Effect of heat treatment on corrosion resistance of DMLS AlSi10Mg alloy[J].Electrochimica Acta,2016,206:346-355.
[74] MENGUCCI P,BARUCCA G,GATTO A,et al.Effects of thermal treatments on microstructure and mechanical properties of a Co-Cr-Mo-W biomedical alloy produced by laser sintering[J].Journal of the Mechanical Behavior of Biomedical Materials,2016,60:106-117.
[75] CABRINI M,LORENZI S,PASTORE T,et al.Evaluation of corrosion resistance of Al-10Si-Mg alloy obtained by means of direct metal laser sintering[J].Journal of Materials Processing Technology,2016,231:326-335.
[76] VANDERESSE N,KY I,QUEVEDO G F,et al.Image analysis characterization of periodic porous materials produced by additive manufacturing[J].Materials & Design,2016,92:767-778.
[77] IDELL Y,LEVINE L E,ALLEN A J,et al.Unexpected δ-phase formation in additive-manufactured Ni-based super alloy[J].JOM,2016,68(3):950-959.
[78] MCLACHLAN D S,CHITEME C,PARK C,et al.AC and DC percolative conductivity of single wall carbon nanotube polymer composites[J].Journal of Polymer Science:Part B:Polymer Physics,2005,43(22):3273-3287.
[79] ZHANG Q Q,XU X,LI H,et al.Mechanically robust honeycomb graphene aerogel multifunctional polymer composites[J].Carbon,2015,93:659-670.
[80] JALILI R,ABOUTALEBI S H,ESRAFILZADEH D,et al.Scalable one-step wet-spinning of graphene fibers and yarns from liquid crystalline dispersions of graphene oxide:towards multifunctional textiles[J].Advanced Functional Materials,2013,23(43):5345-5354.
[81] NAFICY S,JALILI R,ABOUTALEBI S H,et al.Graphene oxide dispersions:tuning rheology to enable fabrication[J].Material Horizons,2014,1(3):326-331.
[82] SUN K,WEI T S,AHN B Y,et al.3D printing of interdigitated Li-ion microbattery architectures[J].Advanced Materials,2013,25(33):4539-4543.
[83] ZHAO C,WANG C,GORKIN R,et al.Three dimensional (3D) printed electrodes for interdigitated supercapacitors[J].Electrochemistry Communications,2014,41:20-23.
[84] NATHAN-WALLESER T,LAZAR I-M,FABRITIUS M,et al.3D micro-extrusion of graphene-based active electrodes:towards high-rate AC line filtering performance electrochemical capacitors[J].Advanced Functional Materials,2014,24:4706-4716.
[85] SUN G Z,AN J,CHUA C K,et al.Layer-by-layer printing of laminated graphene-based interdigitated microelectrodes for flexible planar micro-supercapacitors[J].Electrochemistry Communications,2015,51:33-36.
[86] CHANG Y Z,HAN G Y,YUAN J P,et al.Using hydroxylamine as a reducer to prepare N-doped graphene hydrogels used in high-performance energy storage[J].Journal of Power Sources,2013,238:492-500.
[87] YU X Z,LU B A,XU Z.Super long-life supercapacitors based on the construction of nanohoneycomb-like strongly coupled CoMoO4-3D graphene hybrid electrodes[J].Advanced Materials,2014,26(7):1044-1051.
[88] YU G H,HU L B,LIU N,et al.Supporting information for enhancing the supercapacitor performance of graphene/MnO2-nanostructured electrodes by conductive wrapping[J].Nano Letters,2011,11(10):4438-4442.
[89] GE J,YAO H B,HU W,et al.Facile dip coating processed graphene/MnO2 nanostructured sponges as high performance supercapacitor electrodes[J].Nano Energy,2013,2(4):505-513.
[90] YUAN J J,ZHU J W,BI H P,et al.Graphene-based 3D composite hydrogel by anchoring Co3O4 nanoparticles with enhanced electrochemical properties[J].Phys Chem Chem Phys,2013,15(31):12940-12945.
[91] YE S B,FENG J C,WU P Y.Deposition of three-dimensional graphene aerogel on nickel foam as a binder-free supercapacitor electrode[J].ACS Applied Materials & Interfaces,2013,5(15):7122-7129.
[92] WANG Y,GAI S L,NIU N,et al.Fabrication and electrochemical performance of 3D hierarchical β-Ni(OH)2 hollow microspheres wrapped in reduced graphene oxide[J].Electrochemistry Communications,2007,9(10):2606-2610.
[93] XU Y X,HUANG X Q,LIN Z Y,et al.One-step strategy to graphene/Ni(OH)2 composite hydrogels as advanced three-dimensional supercapacitor electrode materials[J].Nano Research,2013,6(1):65-76.
[94] WANG W,GUO S R,PENCHEV M,et al.Three dimensional few layer graphene and carbon nanotube foam architectures for high fidelity supercapacitors[J].Nano Energy,2013,2(2):294-303.
[95] SRIDHAR V,KIM H J,JUNG J H,et al.Defect-engineered three-dimensional graphene-nanotube-palladium nanostructures with ultrahigh capacitance[J].ACS Nano,2012,6(12):10562-10570.
[96] CHEN X A,CHEN X H,ZHANG F Q,et al.One-pot hydrothermal synthesis of reduced graphene oxide/carbon nanotube/α-Ni(OH)2 composites for high performance electrochemical supercapacitor[J].Journal of Power Sources,2013,243:555-561.
[97] NING G Q,LI T Y,YAN J,et al.Three-dimensional hybrid materials of fish scale-like polyaniline nanosheet arrays on graphene oxide and carbon nanotube for high-performance ultracapacitors[J].Carbon,2013,54:241-248.
[98] DING Y B,BAI W,SUN J H,et al.Cellulose tailored anatase TiO2 nanospindles in three-dimensional graphene composites for high-performance supercapacitors[J].ACS Applied Materials Interfaces,2016,8(19):12165-12175.
[99] YU M,CHEN J P,LIU J H,et al.Mesoporous NiCo2O4 nanoneedles grown on 3D graphene-nickel foam for supercapacitor and methanol electro-oxidation[J].Electrochim Acta,2015,151:99-108.
[100] LIU T Y,ZHUC,KOUT Y,et al.Ion intercalation induced capacitance improvement for graphene -based supercapacitor electrodes[J].Chem Nano Mat,2016,2:635-641.
[101] YU S X,YANG L W,TIAN Y,et al.Mesoporous anatase TiO2 submicrospheres embedded in self-assembled three-dimensional reduced graphene oxide networks for enhanced lithium storage[J].Journal of Materials Chemistry A,2013,1(41):12750-12758.
[102] WU L L,YANG J,TANG J J,et al.Three-dimensional graphene nanosheets loaded with Si nanoparticles by in situ reduction of SiO2 for lithium ion batteries[J].Electrochimica Acta,2016,190:628-635.
[103] ZHAO B,XU Y T,HUANG S Y,et al.3D RGO frameworks wrapped hollow spherical SnO2-Fe2O3 mesoporousnano-shells:fabrication,characterization and lithium storage properties[J].Electrochimica Acta,2016,202:186-196.
[104] LEI X L,ZHANG H Y,CHEN Y M,et al.A three-dimensional LiFePO4/carbon nanotubes/graphene composite as a cathode material for lithium-ion batteries with superior high-rate performance[J].Journal of Alloys and Compounds,2015,626:280-286.
[105] WANG X W,ZHANG L,ZHANG Z H,et al.Growth of 3D hierarchical porous NiO@carbon nanoflakes on graphene sheets for high-performance lithium-ion batteries[J].Phys Chem Chem Phys,2016,18:3893-3899.
[106] CUI K,LI Y K.Monoclinic Li3V2(PO4)3/C nanocrystals co-modified with graphene nanosheets and carbon nanotubes as a three-dimensional-network cathode material for rechargeable lithium-ion batteries[J].RSC Advances,2016,6(10):8431-8439.
[107] LI F,JIANG J Z,WANG X,et al.Assembly of TiO2/graphene with macroporous 3D network framework as an advanced anode material for Li-ion batteries[J].RSC Advances,2016,6(4):3335-3340.
[108] WANG B B,WANG G,LV Z Y,et al.In situ synthesis of hierarchical CoFe2O4 nanoclusters/graphene aerogels and their high performance for lithium-ion batteries[J].Phys Chem Chem Phys,2015,17:27109-27117.
[109] ZHOU Y,LIU Q,LIU D B,et al.Carbon-coated MoO2 dispersed in three-dimensional graphene aerogel for lithium-ion battery[J].Electrochimica Acta,2015,174(1):8-14.
[110] OUYANG B,WANG Y,ZHANG Z,et al.MoS2 anchored free-standing three dimensional vertical graphene foam based binder-free electrodes for enhanced lithium-ion storage[J].Electrochimica Acta,2016,194:151-160.
[111] ZHANG C F,YU J S.Morphology-tuned synthesis of NiCo2O4-coated 3D graphene architectures used as binder-free electrodes for lithium-ion batteries[J].Chemistry-A European Journal,2016,22(13):4422-4430.
[112] SHAN H,XIONG D B,LI X F,et al.Tailored lithium storage performance of graphene aerogel anodes with controlled surface defects for lithium-ion batteries[J].Applied Surface Science,2016,364:651-659.
[113] CHANG J B,HUANG X K,ZHOU G H,et al.Three-dimensional carbon-coated Si/rGO nanostructures anchored by nickel foam with carbon nanotubes for Li-ion battery applications[J].Nano Energy,2015,15:679-687.
[1] 王晨, 燕绍九, 南文争, 陈翔. 表面活性剂对高浓度石墨烯水分散液制备的影响[J]. 材料工程, 2019, 47(7): 50-56.
[2] 陈颖, 姜庆辉, 辛集武, 李鑫, 孙兵杨, 杨君友. 相变储能材料及其应用研究进展[J]. 材料工程, 2019, 47(7): 1-10.
[3] 崔超婕, 田佳瑞, 杨周飞, 金鹰, 董卓娅, 谢青, 张刚, 叶珍珍, 王瑾, 刘莎, 骞伟中. 石墨烯在锂离子电池和超级电容器中的应用展望[J]. 材料工程, 2019, 47(5): 1-9.
[4] 薛子明, 雷卫宁, 王云强, 钱海峰, 李奇林. 超临界条件下脉冲占空比对石墨烯复合镀层微观结构和性能的影响[J]. 材料工程, 2019, 47(5): 53-62.
[5] 王晨, 燕绍九, 南文争, 王继贤, 彭思侃. 高浓度石墨烯水分散液的制备与表征[J]. 材料工程, 2019, 47(4): 56-63.
[6] 卢子龙, 安立宝, 刘扬. 不同浓度硼掺杂石墨烯吸附多层金原子的第一性原理研究[J]. 材料工程, 2019, 47(4): 64-70.
[7] 李芹, 盛利成, 董丽敏, 张彦飞, 金立国. ZnCo2O4及ZnCo2O4/rGO复合材料的制备与电化学性能[J]. 材料工程, 2019, 47(4): 71-76.
[8] 王继刚, 余永志, 邹婧叶, 孟江, 李淑萍, 蒋南. 基于微波辐照合成类石墨烯氮化碳的研究进展[J]. 材料工程, 2019, 47(4): 15-24.
[9] 邹婧叶, 余永志, 顾永攀, 岳夏薇, 孟江, 李淑萍, 王继刚. 高能微波辐照合成类石墨烯氮化碳纳米片的结构特征[J]. 材料工程, 2019, 47(3): 1-7.
[10] 赵双赞, 燕绍九, 陈翔, 洪起虎, 李秀辉, 戴圣龙. 石墨烯纳米片增强铝基复合材料的动态力学行为[J]. 材料工程, 2019, 47(3): 23-29.
[11] 余煜玺, 夏范森, 黄奇凡. 石墨烯改性PDC-SiCNO陶瓷的制备及其介电性能[J]. 材料工程, 2019, 47(3): 8-14.
[12] 杨宇凯, 张宝, 王旭东, 张虎生, 武岳, 关永军. 石墨烯及碳化硅增强铝基复合材料的冲击力学行为[J]. 材料工程, 2019, 47(3): 15-22.
[13] 陈翔, 燕绍九, 王楠, 彭思侃, 王晨, 吴广明, 戴圣龙. δ-MnO2纳米片的制备、表征及电化学性能[J]. 材料工程, 2019, 47(2): 49-55.
[14] 常增花, 王建涛, 李文进, 武兆辉, 卢世刚. 锂离子电池硅基负极界面反应的研究进展[J]. 材料工程, 2019, 47(2): 11-25.
[15] 张丹丹, 沈洪雷, 曹霞, 叶煜松, 张啸, 叶历, 王梦秋. 石墨烯增强金属基航空复合材料研究进展[J]. 材料工程, 2019, 47(1): 1-10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn