Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (9): 46-52    DOI: 10.11868/j.issn.1001-4381.2016.001105
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
MWNTs对MWNTs/Fe2O3光催化性能的影响
李军, 刘祥萱, 柴云, 刘渊, 张浪浪
火箭军工程大学603室, 西安 710025
Effect of MWNTs on Photocatalytic Performance of MWNTs/Fe2O3
LI Jun, LIU Xiang-xuan, CHAI Yun, LIU Yuan, ZHANG Lang-lang
The 603 department, Rocket Force University of Engineering, Xi'an 710025, China
全文: PDF(2713 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用化学液相沉积法制备MWNTs/Fe2O3,以偏二甲肼(UDMH)废水为目标降解物评价MWNTs/Fe2O3的光催化活性。利用XRD,TEM,UV-vis,FTIR,TG-DSC和拉曼光谱考察MWNTs在复合材料中的作用机理。结果表明:MWNTs会影响Fe2O3的吸附能力和光催化能力,当MWNTs与Fe2O3质量比为1:2时,可以有效提高Fe2O3光催化降解UDMH的效率。MWNTs的量和Fe2O3的晶型之间存在定量关系,当MWNTs与Fe2O3质量比大于5:1时,Fe2O3由α型转化为γ型。MWNTs的引入拓展了Fe2O3的光响应范围。MWNTs和Fe2O3之间接触"紧密",有良好的交互作用和较强的结合作用,并且它们之间形成了Fe-O-C化学键。光照下,MWNTs充当光敏剂通过Fe-O-C键将电子转移到Fe2O3上,减少电子-空穴对复合概率,从而提高光催化效率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李军
刘祥萱
柴云
刘渊
张浪浪
关键词 化学液相沉积法MWNTsFe2O3光催化晶型    
Abstract:MWNTs/Fe2O3 was prepared by chemical liquid-deposition process, and unsymmetrical dimethylhydrazine (UDMH) wastewater was chosen as targets to evaluate the photocatalytic performance of MWNTs/Fe2O3. Mechanism of MWNTs in MWNTs/Fe2O3 composites was investigated by XRD, TEM, UV-vis,FTIR, TG-DSC and Raman spectra. The results demonstrate that MWNTs will influence the absorbability and the ability of photocatalysis of Fe2O3. When the mass ratio between MWNTs and Fe2O3 is 1:2, the decomposition efficiency of Fe2O3 photocatalysis for UDMH will be increased effectively. There is a quantitative relationship between the amount of MWNTs and the crystal type of Fe2O3. When the mass ratio between MWNTs and Fe2O3 is higher than 5:1, Fe2O3 will be transformed from α to γ. The introduction of MWNTs has broad the light effect of Fe2O3. The close connection between MWNTs and Fe2O3 form a positive interaction and a strong combination, during which they also produce a chemical bond of Fe-O-C. Under the light, MWNTs will work as a photosensitizer and transform electrons to the Fe2O3 through Fe-O-C, which reduce the possibility of electron-hole pairs recombination and increase the efficiency of photocatalysis.
Key wordschemical liquid-deposition process    MWNTs    Fe2O3    photocatalytic    crystal type
收稿日期: 2016-09-14      出版日期: 2018-09-19
中图分类号:  TB333  
通讯作者: 刘祥萱(1963-),女,教授,博士,研究方向为环境友好材料的设计与应用,联系地址:陕西省西安市灞桥区同心路2号火箭军工程大学603室(710025),E-mail:810008727@qq.com     E-mail: 810008727@qq.com
引用本文:   
李军, 刘祥萱, 柴云, 刘渊, 张浪浪. MWNTs对MWNTs/Fe2O3光催化性能的影响[J]. 材料工程, 2018, 46(9): 46-52.
LI Jun, LIU Xiang-xuan, CHAI Yun, LIU Yuan, ZHANG Lang-lang. Effect of MWNTs on Photocatalytic Performance of MWNTs/Fe2O3. Journal of Materials Engineering, 2018, 46(9): 46-52.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.001105      或      http://jme.biam.ac.cn/CN/Y2018/V46/I9/46
[1] 李松.氧化铁基纳米材料的结构设计、表征与光催化性能研究[D].沈阳:东北大学,2011. LI S. Structural design, characterization, and photocatalytic property investigation of nanostructured iron oxides[D]. Shenyang:Northeastern University, 2011.
[2] 洪起虎, 燕绍九, 杨程,等. 氧化石墨烯/铜基复合材料的微观结构及力学性能[J]. 材料工程,2016,44(9):1-7. HONG Q H,YAN S J,YANG C, et al. Microstructure and mechanical properties of graphene oxide/copper composites[J]. Journal of Materials Engineering,2016, 44(9):1-7.
[3] LI J, SHEN W, KANG B, et al. Preparation of Prussian-blue analogue/carbon nanotube sponge adsorbent for cesium[J]. Micro & Nano Letters, 2014, 9(11):825-828.
[4] KIM I T, NUNNERY G A, JACOB K, et al. Synthesis, characterization, and alignment of magnetic carbon nanotubes tethered with maghemite nanoparticles[J]. Phys Chem C, 2010, 114(15):6944-6951.
[5] XU J, WANG N, GUAN L. Controlled assembly of ultrasmall iron oxide nanoparticles on carbon nanotubes:facile preparation and interfacially induced ferromagnetism[J] Chem Lett, 2012, 41(3):227-228.
[6] 冯婷,冯根生,杨彬. 氧化石墨烯/Fe2O3纳米管复合材料的制备及表征研究[J].化工新型材料,2015,43(3):202-204. FENG T, FENG G S, YANG B. Preparation and characterization of grapheme oxide-Fe2O3 nanotubes[J]. New Chemical Materials, 2015, 43(3):202-204.
[7] YU J G,MA T T,LIU S W. Enhanced photocatalytic activity of mesoporous TiO2 aggregates by embedding carbon nanotubes as electron-transfer channel[J]. Physical Chemistry Chemical Physics,2011,13(8):3491-3501.
[8] CHEN C S, LIU T G, CHEN X H, et al. Preparation and magnetic property of multi-walled carbon nanotube/α-Fe2O3 composites[J]. Transactions of Nonferrous Metals Society of China, 2009, 19(6):1567-1571.
[9] CHEN Y, LIU X, MAO X, et al. γ-Fe2O3-MWNT/poly(p-phenylenebenzobisoxazole) composites with excellent microwave absorption performance and thermal stability[J]. Nanoscale, 2014, 6(12):6440-6447.
[10] 李茂刚,成荣明,徐学诚,等. 碳纳米管负载氧化铁的制备与机理[J].化学通报,2006,69(1):36-40. LI M G, CHENG R M, XU X C, et al. Preparation and mechanism of carbon nanotube loaded ferric oxide[J]. Chemistry Online, 2006, 69(1):36-40.
[11] 常兰,秦伟超. 碳纳米管表面改性及其吸附水中污染物的研究进展[J].化工技术与开发,2014,43(3):43-46. CHANG L, QIN W C. Research progress of surface modification of carbon nanotubes and its adsorption of contaminants in water[J]. Technology and Development of Chemical Industry, 2014, 43(3):43-46.
[12] COURCOT D, PRUVOST C, ZHILINSKAYA E A, et al. Potential of supported copper and potassium oxide catalysts in the combustion of carbonaceous particles[J]. Kinet Catal, 2004, 45(4):580-588.
[13] ANEGGI E, LEITENBURG C D, TROVARELLI A. On the role of lattice/surface oxygen in ceria-zirconia catalysts for diesel soot combustion[J]. Catalysis Today, 2012, 181(1):108-115.
[14] NEEFT J P A, MAKKEE M, MOULIJIN J A. Metal oxides as catalysts for the oxidation of soot[J]. Chem Eng J, 1996, 64(2):295-302.
[15] COMBELLAS C, DELAMAR M, KANOUFI F, et al. Spontaneous grafting of iron surfaces by reduction of aryldiazonium salts in acidic or neutral aqueous solution application to the protection of iron against corrosion[J]. Chem Mater, 2005, 17(15):3968-3975.
[16] LI H, XU T, WANG C, et al. Tribochemical effects on the friction and wear behaviors of diamond-like carbon film under high relative humidity condition[J]. Tribology Lett, 2005,19(3):231-238.
[17] 刘淑玲,李苗苗,李淑,等. 管状α-Fe2O3的合成表征及光学性质[J].粉末冶金材料科学与工程,2013,18(1):419-422. LIU S L, LI M M, LI S, et al. Synthesis, characterization and optical property of tube-like α-Fe2O3 micro-materials[J]. Materials Science and Engineering of Powder Metallurgy, 2013, 18(1):419-422.
[18] PENG H, ZHANG X, HUANG K, et al. Modification of Fe3O4 magnetic nanoparticles by L-dopa or dopamine as an enzyme support[J]. J Wuhan Univer Tech-Mater Sci Ed, 2008, 23(4):480-485.
[19] 周继升. 碳/过渡金属氧化物复合纳米结构的设计及其储锂性能研究[D].北京:北京化工大学,2011. ZHOU J S. Design and lithium-storage properties of carbon/transition metal oxide nanostructures[D]. Beijing:Beijing University of Chemical Technology, 2011.
[20] ZHAO D L,SHENG G D,CHEN C L, et al. Enhanced photocatalytic degradation of methylene blue under visible irradiation on graphene@TiO2 dyade structure[J]. Applied Catalysis B:Environmental,2012,111/112(2):303-308.
[21] 杜红斌.稳定氧化石墨烯陶瓷复合膜制备以及分离性能的研究[J].广东化工,2016,43(5):3-4. DU H B. The preparation and salt separation performance of stable grapheme oxide composite membrane[J]. Guangdong Chemical Industry,2016,43(5):3-4.
[22] 汪圣尧,陈海波,戴珂,等. MWNTs-TiO2纳米复合材料的制备、表征及其光催化活性[J].华中农业大学学报,2015,34(5):70-75. WANG S Y, CHEN H B, DAI K, et al. Preparation, characterization and photocatalytic activity of MWNTs-TiO2 Nano composites[J]. Journal of Huazhong Agricultural University, 2015,34(5):70-75.
[23] SUBRAHMANYAM K, MANNA A K, PATI S K, et al.A study of graphene decorated with metal nanoparticles[J]. Chemical Physics Letters, 2010, 497(1):70-75.
[24] IBRAHIM I, HLIM H N,HUANG N M, et al. Oxide-modified photoelectrode-based photoelectrochemical sensing platform for copper (Ⅱ) ions[J], Plos One, 2016, 11(5):1-18.
[25] RAO A M, EKLUND P C, BANDOW S, et al. Evidence for charge transfer in doped carbon nanotube bundles from Raman scattering[J]. Nature,1997, 388(6639):257-259.
[1] 赵晓华, 魏崇, 苏帅, 崔佳宝, 周建国, 李彩珠, 娄向东. Ag3PO4/ZnO@碳球三元异质结的合成及可见光催化性能[J]. 材料工程, 2019, 47(7): 76-83.
[2] 张宇, 刘湘粤, 毛会玲, 王晨, 杜嬛, 程琥, 庄金亮. 铁盐对制备MIL-100(Fe)的影响及其光催化性能[J]. 材料工程, 2019, 47(3): 71-78.
[3] 王娟, 王国宏, 孙玲玲. Ag2CO3/Ag/g-C3N4Z-型异质结的制备及可见光催化降解RhB[J]. 材料工程, 2018, 46(9): 39-45.
[4] 周铁路, 刘会娥, 陈爽, 丁传芹, 齐选良. 诱导助剂对石墨烯负载的TiO2颗粒分布、结构和光催化活性的影响[J]. 材料工程, 2018, 46(8): 43-50.
[5] 宗志芳, 杨麟, 张浩, 熊磊. 环境协调型Ce-La/TiO2复合材料的制备及光-湿-热性能[J]. 材料工程, 2018, 46(5): 145-150.
[6] 夏永辉, 高强, 王阳毅, 李梦娟. AZO中空纳米纤维的制备及光催化性能[J]. 材料工程, 2018, 46(2): 16-21.
[7] 张相辉. La掺杂改性Bi2WO6纳米材料的制备及其光催化性能[J]. 材料工程, 2018, 46(11): 57-62.
[8] 刘湘粤, 张宇, 王晨, 毛会玲, 杜嬛, 程琥, 庄金亮. 亚铁盐制备高结晶度MIL-100(Fe)纳米材料及其光降解有机染料性能[J]. 材料工程, 2018, 46(10): 127-134.
[9] 周锋, 任向红, 刘建友, 刘嫔. 光催化降解水体有机污染物的研究进展[J]. 材料工程, 2018, 46(10): 9-19.
[10] 张浩. 基于光催化性能的Cu-Ce/TiO2湿性能[J]. 材料工程, 2018, 46(1): 114-118.
[11] 曲家惠, 陈金垒, 李红, 张文杰. 溶胶-凝胶法制备xLa-3%In-TiO2光催化材料[J]. 材料工程, 2017, 45(8): 14-18.
[12] 黄凤萍, 崔梦丽, 张双, 郭宇煜, 王帅, 李缨. 高硅氧纤维负载纳米Dy/TiO2薄膜的制备及性能[J]. 材料工程, 2017, 45(7): 66-70.
[13] 曲家惠, 都玲, 赵方昕, 杨丽丽, 张文杰. 溶胶-凝胶法制备La2Ti2O7/HZSM-5及其光催化活性[J]. 材料工程, 2017, 45(7): 71-76.
[14] 赵燕茹, 马建中, 刘俊莉. 可见光响应型ZnO基纳米复合光催化材料的研究进展[J]. 材料工程, 2017, 45(6): 129-137.
[15] 曾斌, 陈小华, 汪次荣. 石墨烯负载硫化锌/硫化铜异质结的制备及光催化性能[J]. 材料工程, 2017, 45(12): 99-105.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn