Please wait a minute...
 
2222材料工程  2017, Vol. 45 Issue (10): 59-64    DOI: 10.11868/j.issn.1001-4381.2016.001112
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
含氢硅油制备SiC晶须的研究
王瑶1,2, 陈旸1,2,*(), 乔宁1,2, 李欣3, 张文婷1,2
1 华北理工大学 材料科学与工程学院, 河北 唐山 063009
2 河北省无机非金属材料重点实验室, 河北 唐山 063009
3 华北理工大学 建筑工程学院, 河北 唐山 063009
Research on SiC Whisker Prepared by H-PSO
Yao WANG1,2, Yang CHEN1,2,*(), Ning QIAO1,2, Xin LI3, Wen-ting ZHANG1,2
1 College of Materials Science and Engineering, North China University of Science and Technology, Tangshan 063009, Hebei, China
2 Hebei Provincial Key Laboratory of Inorganic Nonmetallic Materials, Tangshan 063009, Hebei, China
3 College of Civil and Architectual Engineering, North China University of Science and Technology, Tangshan 063009, Hebei, China
全文: PDF(11748 KB)   HTML ( 22 )  
输出: BibTeX | EndNote (RIS)      
摘要 

以高含氢硅油为原料,在石墨基体上生长出SiC晶须。主要研究石墨基体的表面状态和加热温度对SiC晶须生长的影响,探究SiC晶须形成过程。影响SiC晶须形核和生长的主要因素为热处理温度,随着热处理温度的升高,SiC晶须的结晶产量也相应增高。石墨基体的表面状态对SiC晶须的形成也有一定的影响,随着石墨基体缺陷提供形核点的增多,SiC晶须的结晶产量提高,并且出现相互搭接的现象。SiC晶须的形成过程分为形核和生长两个部分,低温形核,高温生长,遵循VLS(气-液-固)生长机理。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王瑶
陈旸
乔宁
李欣
张文婷
关键词 SiC晶须热处理温度基体表面状态生长机理    
Abstract

SiC whiskers were prepared on the matrix of graphite by using high hydrogenous silicone oil(PSO) as raw material. The effect of surface conditions of graphite and heating temperature on the growth of SiC whisker was mainly studied in this paper. The main factor which affects the nucleation and growth of SiC whisker is the heating temperature, with the heating temperature rising, the production of SiC whisker increases. The surface condition of graphite matrix also influences the growth of SiC whisker. With the nucleation points provided by graphite matrix defects increasing, the production of SiC whisker incleases and SiC whisker starts to overlap with each other. The formation process of SiC whisker includes two steps:nucleation and growth. SiC whisker nucleates at low temperature and grows at high temperature, which follows the VLS (vapor-liquid-solid) growth mechanism.

Key wordsSiC whisker    heating temperature    the condition of matrix    growth mechanism
收稿日期: 2016-09-22      出版日期: 2017-10-18
中图分类号:  TB33  
基金资助:河北省自然科学基金青年基金(E2016209327);华北理工大学大学生创新创业训练计划项目(X2016165);河北省科技计划项目(16211505)
通讯作者: 陈旸     E-mail: 360266139@qq.com
作者简介: 陈旸(1983-), 女, 讲师, 博士, 研究方向为无机非金属复合材料、碳化硅晶须及其复合材料、碳纤维及其复合材料, 联系地址:河北省唐山市新华西道46号华北理工大学材料科学与工程学院(063009), E-mail:360266139@qq.com
引用本文:   
王瑶, 陈旸, 乔宁, 李欣, 张文婷. 含氢硅油制备SiC晶须的研究[J]. 材料工程, 2017, 45(10): 59-64.
Yao WANG, Yang CHEN, Ning QIAO, Xin LI, Wen-ting ZHANG. Research on SiC Whisker Prepared by H-PSO. Journal of Materials Engineering, 2017, 45(10): 59-64.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.001112      或      http://jme.biam.ac.cn/CN/Y2017/V45/I10/59
Fig.1  1300℃不同石墨基体表面的SiC晶须SEM图
(a)320#; (b)240#; (c)180#; (d)80#; (e)小刀处理过的石墨基体
Fig.2  1600℃不同基体SiC晶须的XRD图
Fig.3  1500℃不同石墨基体上SiC晶须的红外谱图
Fig.4  1500℃晶须Si—C和Si—O键吸光度与石墨基体表面状态的关系
Fig.5  不同热处理温度下用320#砂纸打磨石墨基体SiC晶须的SEM图
(a), (b)1300℃; (c), (d)1400℃
Fig.6  高温下SiC晶须的SEM图
(a)1500℃; (b)1600℃
Fig.7  不同温度下SiC晶须的红外图谱
Fig.8  不同温度下石墨基体表面晶须的Si—C和Si—O键吸光度
Fig.9  1600℃烧结产物的XRD图谱
(a)SiC晶须; (b)包埋粉末
1 金培鹏, 周文胜, 丁雨田. 晶须在复合材料中的应用及其作用机理[J]. 盐湖研究, 2005, 13 (2): 1- 6.
1 JIN P P , ZHOU W S , DING Y T . Application of whiskers in composites and their reinforcement mechanism[J]. Journal of Salt Lake Research, 2005, 13 (2): 1- 6.
2 聂立芳, 张玉军, 魏红康. 碳化硅晶须增韧陶瓷基复合材料的研究进展[J]. 山东陶瓷, 2006, 29 (2): 16- 19.
2 NIE L F , ZHANG Y J , WEI H K . Recent researches and developments of SiC whisker-reinforced ceramic-matrix composites[J]. Shandong Ceramics, 2006, 29 (2): 16- 19.
3 JIANG J F , WANG Y . Microstructure and mechanical properties of the rheoformed cylindrical part of 7075 aluminum matrix composite reinforced with nano-sized SiC particles[J]. Materials and Design, 2015, 79 (3): 32- 41.
4 LI X K , LIU L , ZHANG Y X , et al. Synthesis of nanometer silicon carbide whiskers from binary carbonaceous silica aerogels[J]. Carbon, 2001, 39 (2): 159- 165.
doi: 10.1016/S0008-6223(00)00020-8
5 SHIN Y , WANG C M , SAMUELS W D . Synthesis of SiC nanorods from bleached wood pulp[J]. Materials Letters, 2007, 61 (13): 2814- 2817.
doi: 10.1016/j.matlet.2006.10.035
6 DHIMAN R , JOHNSON E , MORGEN P . Growth of SiC nanowhiskers from wooden precursors, separation, and characterization[J]. Ceramics International, 2011, 37 (8): 3759- 3764.
doi: 10.1016/j.ceramint.2011.06.001
7 DHAGE S , LEE H C , HASSAN M S , et al. Formation of SiC nanowhiskers by carbothermic reduction of silica with activated carbon[J]. Materials Letters, 2009, 63 (2): 174- 176.
doi: 10.1016/j.matlet.2008.09.056
8 PANDA S K , SENGUPTA J , JACOB C . Synthesis of β-SiC/SiO2 core-sheath nanowires by CVD technique using Ni as catalyst[J]. Journal of Nanoscience and Nanotechnology, 2010, 10 (5): 3046- 3052.
doi: 10.1166/jnn.2010.2167
9 李小宏, 辜丽欢, 陈善华, 等. 原位反应法制备晶须增强多孔陶瓷研究进展[J]. 材料导报, 2015, 29 (3): 35- 31.
doi: 10.11896/j.issn.1005-023X.2015.03.013
9 LI X H , GU L H , CHEN S H , et al. Research progress of producing whisker reinforced porous ceramics by in-site synthesis technique[J]. Materials Review, 2015, 29 (3): 35- 31.
doi: 10.11896/j.issn.1005-023X.2015.03.013
10 CETINKAYA S , EROGLU S . Chemical vapor deposition of C on SiO2 and subsequent carbothermal reduction for the synthesis of nanocrystalline SiC particles/whiskers[J]. Journal of Refractory Metals and Hard Materials, 2011, 29 (2): 566- 572.
11 吴艳军, 张亚非, 杨忠学, 等. 碳纤维无催化剂法制备尽β-SiC纳米晶须[J]. 无机材料学报, 2005, 20 (3): 740- 744.
11 WU Y J , ZHANG Y F , YANG Z X , et al. Catalyst-free method of preparing β-SiC nanowhiskers by using carbon whiskers[J]. Journal of Inorganic Materials, 2005, 20 (3): 740- 744.
12 李心慰, 曲殿利, 李志坚. 以硅灰、白炭黑、硅溶胶为硅源合成碳化硅晶须的研究[J]. 耐火材料, 2011, 45 (2): 105- 102.
12 LI X W , QU D L , LI Z J . Preparation of SiC whiskers from silica fume, amorphous silica, and silica sol[J]. Refractories, 2011, 45 (2): 105- 102.
13 古卫俊, 贾素秋, 邱敬东, 等. 稻壳制备碳化硅晶须[J]. 硅酸盐学报, 2014, 42 (1): 29- 32.
13 GU W J , JIA S Q , QIU J D , et al. Preparation of SiC whiskers from rice husk[J]. Journal of the Chinese Ceramic Society, 2014, 42 (1): 29- 32.
14 汪耀祖, 郭梦熊. 稻壳SiC晶须的生长工艺及机理[J]. 硅酸盐学报, 2013, 21 (1): 22- 28.
14 WANG Y Z , GUO M X . Growth technology and mechanism of SiC whisker by use of rice hulls[J]. Journal of the Chinese Ceramic Society, 2013, 21 (1): 22- 28.
15 黄凤萍, 李贺军, 卢锦花, 等. 碳纤维诱导法制备SiC晶须的工艺及机理[J]. 硅酸盐学报, 2007, 35 (5): 643- 647.
15 HUANG F P , LI H J , LU J H , et al. Growth process and mechanism of SiC whiskers by induction of carbon fiber[J]. Journal of the Chinese Ceramic Society, 2007, 35 (5): 643- 647.
16 张军战, 张颖, 蒋明学, 等. 不同原料合成SiC晶须的形貌结构特征和生长机理研究[J]. 功能材料, 2012, 13 (43): 1782- 1785.
doi: 10.3969/j.issn.1001-9731.2012.13.031
16 ZHANG J Z , ZHANG Y , JIANG M X , et al. Microstructure and growth mechanism of SiC whiskers synthesized by using different raw materials[J]. Journal of Functional Materials, 2012, 43 (13): 1782- 1785.
doi: 10.3969/j.issn.1001-9731.2012.13.031
17 CHEN Y F , LIU X Z , DENG X W . Factors affecting the growth of SiC nano-whiskers[J]. Journal of Materials Science & Technology, 2010, 26 (11): 1041- 1046.
18 CHEN Y , WANG C G , ZHU B , et al. Growth of SiC whiskers from hydrogen silicone oil[J]. Journal of Crystal Growth, 2012, 357, 42- 47.
doi: 10.1016/j.jcrysgro.2012.07.043
19 GRILL A , PATEL V . Low dielectric constant films prepared by plasma-enhanced chemical vapor deposition from tetramethylsilane[J]. Journal of Applied Physics, 1999, 85 (6): 3314- 3318.
doi: 10.1063/1.369677
20 KIM M T , LEE J . Characterization of amorphous SiC:H films deposited from hexamethyldisilazane[J]. Thin Solid Films, 1997, 303 (1/2): 173- 179.
21 陈友存, 王启宝. SiC晶须VLS生长机理及生长动力学研究[J]. 化学物理学报, 1998, 11 (3): 258- 260.
21 CHEN Y C , WANG Q B . Studies on the growth mechanism and the kinetics of synthesizing SiC whiskers by VLS process[J]. Chinese Journal of Chemical Physics, 1998, 11 (3): 258- 260.
22 陈旸, 王成国, 高冉冉. SiC晶须制备工艺的研究[J]. 无机材料学报, 2013, 28 (7): 758- 762.
22 CHEN Y , WANG C G , GAO R R . Research of the preparation technology for the SiC whisker[J]. Journal of Inorganic Materials, 2013, 28 (7): 758- 762.
23 LI X , ZHANG G Q . Synthesis of SiC whiskers by VLS and VS process[J]. Ceramics International, 2016, 42 (5): 5668- 5676.
doi: 10.1016/j.ceramint.2015.12.091
[1] 阮家苗, 李红, 姚彧敏, 杨敏, 任慕苏, 孙晋良. 热处理温度对高导热3D C/C复合材料性能的影响[J]. 材料工程, 2021, 49(9): 128-134.
[2] 姜卓钰, 束小文, 吕晓旭, 高晔, 周怡然, 董禹飞, 焦健. SiC晶须增强SiCf/SiC复合材料的力学性能[J]. 材料工程, 2021, 49(8): 89-96.
[3] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[4] 焦华, 赵康, 石蕊, 马利宁, 卞铁荣, 汤玉斐. 羟基磷灰石纳米棒的水热制备及其晶体生长机理研究[J]. 材料工程, 2020, 48(1): 136-143.
[5] 强丁丁, 赵建国, 高利岩, 邢宝岩, 潘启亮, 古玲, 王海青. 微波辅助加热法在泡沫镍表面生长纳米碳管[J]. 材料工程, 2017, 45(12): 71-76.
[6] 蒋淑英, 李世春. Al/Fe液-固界面扩散反应层生长动力学分析[J]. 材料工程, 2015, 43(5): 62-66.
[7] 刘学杰, 魏怀, 任元, 陆峰, 张素慧, 银永杰. 基于第一性原理方法研究基团在CVD金刚石薄膜(001)表面上的生长[J]. 材料工程, 2014, 0(4): 46-52.
[8] 范小花, 唐一科, 侯长军, 范瑛. 热处理温度对Pt-WO3薄膜结构和氢敏性能的影响[J]. 材料工程, 2008, 0(7): 47-50.
[9] 刘皓, 李克智, 李贺军, 卢锦花, 翟言强. 热处理温度对中间相沥青基碳/碳复合材料力学性能的影响[J]. 材料工程, 2007, 0(1): 15-18.
[10] 高后秀, 王炜娜, 陈泉水, 刘双翼. 一维Cu-Zn-Al合金纳米结构的制备及生长机理研究[J]. 材料工程, 2005, 0(5): 27-29,33.
[11] 郝孟一, 蔡建明, 杜娟, 李臻熙. C元素对600℃高温钛合金热处理温度窗口的影响[J]. 材料工程, 2003, 0(7): 20-22.
[12] 涂小林, 吴树森, 吴广忠. (NaPO3)n对过共晶Al-Si合金初晶硅细化的研究[J]. 材料工程, 2002, 0(8): 13-16.
[13] 陈拥军, 李建保, 魏强民, 翟华嶂. 不同形貌TaCx晶须的制备及生长机理[J]. 材料工程, 2002, 0(10): 15-18.
[14] 昝青峰, 黄勇, 汪长安, 李淑琴, 李翠伟. 长柱状β-Si3N4晶粒与SiC晶须在层状Si3N4/BN复合材料中的作用[J]. 材料工程, 2001, 0(5): 22-26.
[15] 金燕苹, 顾明元, 施忠良. 非连续增强Zn-23Al-2Cu基复合材料的DSC研究[J]. 材料工程, 2000, 0(2): 22-24.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn