Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (6): 125-131    DOI: 10.11868/j.issn.1001-4381.2016.001120
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
PMN/CB/PF/ⅡR复合材料制备及其阻尼性能
李建1, 杜明2, 黄志雄2
1. 湖北汽车工业学院 汽车动力传动与电子控制湖北省 重点实验室, 湖北 十堰 442002;
2. 武汉理工大学 特种 功能材料技术教育部重点实验室, 武汉 430070
Preparation and Damping Properties of PMN/CB/PF/ⅡR Composite
LI Jian1, DU Ming2, HUANG Zhi-xiong2
1. Hubei Key Laboratory of Automotive Power Train and Electronic Control, Hubei University of Automotive Technology, Shiyan 442002, Hubei, China;
2. Key Laboratory of Advanced Technology for Specially Functional Materials(Ministry of Education), Wuhan University of Technology, Wuhan 430070, China
全文: PDF(3053 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 以丁基橡胶为聚合物基体,酚醛树脂为硫化剂,通过加入压电陶瓷和导电炭黑,制得了一种高阻尼宽温域的聚合物基压电阻尼复合材料(PMN/CB/PF/ⅡR)。系统研究压电陶瓷和乙炔炭黑含量、极化、外加交变应力大小及频率、聚合物共聚基体等因素对复合材料阻尼性能的影响。研究表明:在相同的外力条件下,当外力施加频率与复合材料模量相匹配,PMN质量分数为50%,炭黑为5%时,PMN/CB/PF/ⅡR复合材料的阻尼系数峰值tanδmax达到最大0.81,阻尼温域范围为-35~60℃,复合材料的阻尼性能最好。而且,极化过的样品比未极化的样品具有更高的阻尼峰值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李建
杜明
黄志雄
关键词 复合材料丁基橡胶压电陶瓷阻尼性能    
Abstract:The aim of this study was to investigate the damping properties of butyl rubber (ⅡR) composite filled with conductive carbon black and piezoelectric ceramics particles (PMN). Factors such as the content of PMN and CB, external force and its frequencies, polarization and modulus of polymer matrix on the damping properties of the composite were studied by DMA analysis. The results show that with the same external force, only when the frequency of external force is matched with the modulus of the composite, the mass fraction of PMN is 50% and CB is 5%, the damping peak can reach its maximum value, the damping coefficient maximum reaches 0.81, the damping temperature range is -35-60℃, and with optimum damping property. And the damping peak of polarized sample is higher than that of unpolarized.
Key wordscomposite    butyl rubber    piezoelectric ceramic    damping property
收稿日期: 2016-09-18      出版日期: 2018-06-14
中图分类号:  TQ325  
通讯作者: 李建(1980-),男,副教授,博士,主要从事树脂基复合材料研究,联系地址:湖北省十堰市车城西路167号湖北汽车工业学院汽车动力传动与电子控制湖北省重点实验室(442002),E-mail:lijian_0711@126.com     E-mail: lijian_0711@126.com
引用本文:   
李建, 杜明, 黄志雄. PMN/CB/PF/ⅡR复合材料制备及其阻尼性能[J]. 材料工程, 2018, 46(6): 125-131.
LI Jian, DU Ming, HUANG Zhi-xiong. Preparation and Damping Properties of PMN/CB/PF/ⅡR Composite. Journal of Materials Engineering, 2018, 46(6): 125-131.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.001120      或      http://jme.biam.ac.cn/CN/Y2018/V46/I6/125
[1] 赵云峰, 游少雄. 结构/阻尼一体化复合材料技术及其应用研究进展[J]. 材料工程, 2012(12):86-91. ZHAO Y F, YOU S X. Review on the structure/damping cocured composite materials and their applications[J]. Journal of Materials Engineering, 2012(12):86-91.
[2] ADAMS R D, MAHERI M R. Damping in advanced polymer-matrix composites[J]. Journal of Alloys and Composites, 2003, 355:126-130.
[3] 倪楠楠, 温月芳, 贺德龙,等. 结构-阻尼复合材料研究进展[J]. 材料工程, 2015,43(6):90-101. NI N N, WEN Y F, HE D L, et al. Progress on the research of structure-damping composites[J]. Journal of Materials Engineering, 2015,43(6):90-101.
[4] CHUNG D D L. Review:materials for vibration damping[J]. Journal of Materials Science, 2001, 36(24):5733-5737.
[5] ZHOU X Q, YU D Y, SHAO X Y, et al. Research and applications of viscoelastic vibration damping materials:a review[J]. Composite Structures, 2016,136(8):460-480.
[6] LANDRO L D, LORENZI W. Mechanical properties and dynamic mechanical analysis of thermoplastic-natural fiber/glass reinforced composites[J]. Macromolecular Symposia, 2009, 286(1):145-155.
[7] DEVI L U, BHAGAWAN S S, THOMAS S. Dynamic mechanical analysis of pineapple leaf/glass hybrid fiber reinforced polyester composites[J]. Polymer Composites, 2010, 31(6):956-965.
[8] 黄光速, 吴锦荣, 郑静. 橡胶阻尼材料的研究进展[J]. 高分子通报, 2014(5):49-56. HUANG G S, WU J R, ZHEN J. Research progress on damping rubber materials[J]. Chinese Polymer Bulletin, 2014(5):49-56.
[9] 何慧敏, 王雁冰, 沈强,等. 压电陶瓷/聚合物基新型阻尼复合材料的研究进展[J]. 材料导报, 2008, 22(1):41-45. HE H M, WANG Y B, SHEN Q, et al. Research progress in piezoelectric ceramic/polymer advanced damping materials[J]. Materials Review, 2008, 22(1):41-45.
[10] RUSSO P, ACIERNO D, GALLO E. Processing and dynamic-mechanical properties of poly(butylen terephthalate) based nanocomposites[J]. Macromolecular Symposia, 2009, 286(1):172-179.
[11] 蔡俊, 李亚红, 蔡伟民. PZT/CB/PVC压电导电高分子复合材料的吸声机理[J]. 高分子材料科学与工程, 2007, 23(4):215-218. CAI J, LI Y H, CAI W M. Study on acoustic absorption mechanism of piezoelectric and electrical conductive polymeric composite PZT/CB/PVC[J]. Polymeric Materials Science and Engineering, 2007, 23(4):215-218.
[12] LUO D B, LIU H X, LI Y F, et al. Analysis of D33 of dilute model composite piezoelectric materials[J]. Acta Materiae Compositae Sinica, 2005, 22(2):125-129.
[13] 王晏研, 陈喜荣, 黄光速,等. CⅡR/ACM/PZT/CB复合材料的阻尼性能[J]. 高分子材料科学与工程, 2005, 21(3):246-249. WANG Y Y, CHEN X R, HUANG G S, et al. Research on the damping performance of CⅡR/ACM/PZT/CB composites[J]. Polymeric Materials Science and Engineering, 2005, 21(3):246-249.
[14] TURCU S, JADIDIAN B, DANFORTHS C, et al. Piezoelectric properties of novel oriented ceramic-polymer composites with 2-2 and 3-3 connectivity[J]. Journal of Electro Ceramics, 2003, 9(3):165-171.
[15] XU D Y, CHENG X, GUO X J, et al. Design, fabrication and property investigation of cement/polymer based 1-3 connectivity piezo-damping composites[J]. Construction and Building Materials, 2015, 84:219-223.
[16] NUNES-PEREIRA J, SENCADAS V, CORRIA V, et al. Energy harvesting performance of piezoelectric electrospun polymer fibers and polymer/ceramic composites[J]. Sensors and Actuators. A:Physical, 2013, 196:55-62.
[17] TIWARI V,SRIVASTAVA G. Enhanced dielectric and piezoelectric properties of 0-3 PZT/PVDF composites[J]. Journal of Polymer Research, 2016, 23(3):1-6.
[18] PHERMPOMSAKUL Y, MUENSIT S. Determination of piezoelectric and pyroelectric coefficients and thermal diffusivity of l-3 PZT/epoxy composites[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2004, 11(2):280-286.
[19] PLACZEK M. Dynamic characteristics of a piezoelectric transducer with structural damping[J]. Solid State Phenomena, 2013, 198:633-638.
[20] XU D Y, DU P, WANG J X, et al. Design and properties of Gaussian-type 1-3 piezoelectric composites[J].Composite Structures, 2016,40:213-216.
[21] 代璟, 黄志雄, 石敏先,等. 基于ANSYS的0-3型压电复合材料电荷分布[J]. 复合材料学报, 2013, 30(3):220-224. DAI J, HUANG Z X, SHI M X et al. Charge distribution in 0-3 piezoelectric composites by using ANSYS[J]. Acta Materiae Compositae Sinica, 2013, 30(3):220-224.
[22] 赵雄伟, 臧充光, 焦清介,等. Cu-CF/EP复合材料导电与阻尼性能研究[J]. 材料工程, 2017,45(9):45-51. ZHAO X W, ZANG C G, JIAO Q J, et al. Conductivity and damping properties of copper coated CF/EP composite[J]. Journal of Materials Engineering, 2017,45(9):45-51.
[23] CAO F H, WANG J C. Preparation and characterization of hyperbranched polymer modified montmorillonite/chlorinated butyl rubber damping composites[J]. Journal of Applied Polymer Science, 2016, 133(22):43645.
[24] VESCOVINI R, BISAGNI C. A procedure for the evaluation of damping effects in composite laminated structures[J]. Progress in Aerospace Sciences, 2015, 78(4):19-29.
[25] CROSSLEY S, WHITER R A, KAR-NARAYAN S. Polymer-based nanopiezoelectric generators for energy harvesting applications[J]. Materials Science and Technology, 2014, 30(13):1623-1624.
[26] MANOJ N R, CHANDRASEKHAR L, PATRI M, et al. Vibration damping materials based on interpenetrating polymer networks of carboxylated nitrile rubber and poly(methyl methacrylate)[J]. Polymers for Advanced Technologies, 2002, 13(9):644-648.
[1] 许文龙, 陈爽, 张津红, 刘会娥, 朱佳梦, 刁帅, 于安然. 羧甲基纤维素-石墨烯复合气凝胶的制备及吸附研究[J]. 材料工程, 2020, 48(9): 77-85.
[2] 曹弘毅, 姜明顺, 马蒙源, 张法业, 张雷, 隋青美, 贾磊. 复合材料层压板分层缺陷相控阵超声检测参数优化方法[J]. 材料工程, 2020, 48(9): 158-165.
[3] 栾建泽, 那景新, 谭伟, 慕文龙, 申浩, 秦国锋. 铝合金-BFRP粘接接头的服役高温老化力学性能及失效预测[J]. 材料工程, 2020, 48(9): 166-172.
[4] 曾成均, 刘立武, 边文凤, 冷劲松, 刘彦菊. 激励响应复合材料的4D打印及其应用研究进展[J]. 材料工程, 2020, 48(8): 1-13.
[5] 魏化震, 钟蔚华, 于广. 高分子复合材料在装甲防护领域的研究与应用进展[J]. 材料工程, 2020, 48(8): 25-32.
[6] 包建文, 钟翔屿, 张代军, 彭公秋, 李伟东, 石峰晖, 李晔, 姚锋, 常海峰. 国产高强中模碳纤维及其增强高韧性树脂基复合材料研究进展[J]. 材料工程, 2020, 48(8): 33-48.
[7] 肇研, 刘寒松. 连续纤维增强高性能热塑性树脂基复合材料的制备与应用[J]. 材料工程, 2020, 48(8): 49-61.
[8] 陈利, 焦伟, 王心淼, 刘俊岭. 三维机织复合材料力学性能研究进展[J]. 材料工程, 2020, 48(8): 62-72.
[9] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[10] 张波波, 张文娟, 杜雪岩, 王有良. 铁基磁性纳米材料吸附废水中重金属离子研究进展[J]. 材料工程, 2020, 48(7): 93-102.
[11] 高禹, 刘京, 王进, 王柏臣, 崔旭, 包建文. 真空热循环对碳/双马来酰亚胺复合材料低速冲击性能的影响[J]. 材料工程, 2020, 48(7): 154-161.
[12] 冯景鹏, 余欢, 徐志锋, 蔡长春, 王振军, 胡银生, 王雅娜. 2.5D浅交直联Cf/Al复合材料的显微组织及弯曲和剪切性能[J]. 材料工程, 2020, 48(6): 132-139.
[13] 易振华, 冉丽萍, 易茂中. Ni-Cr-P焊膏钎焊C/C复合材料的组织和性能[J]. 材料工程, 2020, 48(5): 127-135.
[14] 张从阳, 李志锐, 方东, 叶永盛, 叶喜葱, 吴海华. SiCp/AZ91D镁基纳米复合材料的室温拉伸行为及塑性变形机理[J]. 材料工程, 2020, 48(4): 108-115.
[15] 张芳芳, 段永川, 高安娜, 姚丹. 基于耦合法的二维三轴编织复合材料热学性能预测及验证[J]. 材料工程, 2020, 48(4): 151-157.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn