Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (11): 37-44    DOI: 10.11868/j.issn.1001-4381.2016.001159
  综述 本期目录 | 过刊浏览 | 高级检索 |
碳纳米管纤维与薄膜致密化研究现状
韩宝帅1,2, 薛祥1, 赵志勇1,2, 牛涛2, 曲海涛2, 徐严谨2, 侯红亮2
1. 哈尔滨工业大学 材料科学与工程学院, 哈尔滨 150001;
2. 中国航空制造技术研究院, 北京 100024
Research Status of Carbon Nanotube Fibers and Films Densification
HAN Bao-shuai1,2, XUE Xiang1, ZHAO Zhi-yong1,2, NIU Tao2, QU Hai-tao2, XU Yan-jin2, HOU Hong-liang2
1. School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China;
2. AVIC Manufacturing Technology Institute, Beijing 100024, China
全文: PDF(3924 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 碳纳米管(carbon nanotubes,CNTs)具有良好的力学、电学和热学性能,具有广阔的应用前景,受到各国学者的广泛关注。由碳纳米管束组成的碳纳米管纤维与薄膜是碳纳米管在宏观的主要应用形式,但是其各项性能却远低于单个碳纳米管,主要原因在于其致密度较低。对碳纳米管纤维及薄膜进行致密化处理,是提高其性能的主要方法。本文对近年来碳纳米管纤维与薄膜致密化工作的研究进展进行了概述,归纳了致密化的理论基础,探讨了多种致密化工艺对碳纳米管纤维与薄膜结构的影响,并比较了不同工艺下力学性能、电学性能的变化。基于目前的研究现状,讨论了碳纳米管纤维与薄膜致密化技术工程化应用中的不足,认为采用拉拔与轧制等方法组合强化是未来强化碳纳米管纤维与薄膜的有效方法。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩宝帅
薛祥
赵志勇
牛涛
曲海涛
徐严谨
侯红亮
关键词 碳纳米管致密化取向优化高强高导电性    
Abstract:Carbon nanotubes(CNTs) exhibit good mechanical, electrical and thermal properties, and thus with wide application prospects, therefore, attracted wide attention are received from scholars of various countries. CNT fibers and films, composed by CNT bundles, are the main application forms of CNTs in macroscopic scale. However, the performance of CNT fibers and films are far lower than that of single CNT, which is mainly owing to their low density. The main approach for strengthening CNT fibers and films is to improve their density. The progress of CNT fiber and film densification researches in recent years was summarized in this article, and the related theoretical basis of the densification was concluded. The influence of different densification processes on their microstructure was discussed, and the tensile properties and electrical properties were compared. Based on current research situation,the shortage was also pointed out in this article, and the process combining the drawing and rolling was considered to be the effective method for CNT fibers and films strengthening.
Key wordscarbon nanotubes    densification    alignment optimization    high strength    high conductivity
收稿日期: 2016-09-27      出版日期: 2018-11-19
中图分类号:  TB321  
通讯作者: 薛祥(1961-),男,教授,博士,研究方向:先进纳米材料与复合材料,联系地址:哈尔滨工业大学材料科学与工程学院733室(150001),E-mail:xxue@hit.edu.cn     E-mail: xxue@hit.edu.cn
引用本文:   
韩宝帅, 薛祥, 赵志勇, 牛涛, 曲海涛, 徐严谨, 侯红亮. 碳纳米管纤维与薄膜致密化研究现状[J]. 材料工程, 2018, 46(11): 37-44.
HAN Bao-shuai, XUE Xiang, ZHAO Zhi-yong, NIU Tao, QU Hai-tao, XU Yan-jin, HOU Hong-liang. Research Status of Carbon Nanotube Fibers and Films Densification. Journal of Materials Engineering, 2018, 46(11): 37-44.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.001159      或      http://jme.biam.ac.cn/CN/Y2018/V46/I11/37
[1] De VOLDER M F,TAWFICK S H,BAUGHMAN R H,et al.Carbon nanotubes:present and future commercial applications[J].Science,2013,339(6119):535-539.
[2] CHEN H Y,ZENG S,CHEN M H,et al.Fabrication and functionalization of carbon nanotube films for high-performance flexible supercapacitors[J].Carbon,2015,92:271-296.
[3] MAYHEW E,PRAKASH V.Thermal conductivity of high performance carbon nanotube yarn-like fibers[J].Journal of Applied Physics,2014,115(17):174306-174309.
[4] MITTAL M,KUMAR A.Carbon nanotube (CNT) gas sensors for emissions from fossil fuel burning[J].Sensors & Actuators B Chemical,2014,203:349-362.
[5] LUO S D,OBITAYO W,LIU T.SWCNT-thin-film-enabled fiber sensors for lifelong structural health monitoring of polymeric composites-from manufacturing to utilization to failure[J].Carbon,2014,76(9):321-329.
[6] LAWAL A T.Synthesis and utilization of carbon nanotubes for fabrication of electrochemical biosensors[J].Materials Research Bulletin,2015,73:308-350.
[7] ALI A A,ELTABEY M M,ABDELBARY B M,et al.MWCNTs/carbon nano fibril composite papers for fuel cell and super capacitor applications[J].Journal of Electrostatics,2014,73:12-18.
[8] JIN Z,TERRONES M,CHONG R P,et al.Carbon science in 2016:status,challenges and perspectives[J].Carbon,2016,98:708-732.
[9] YEHEZKEL S,AUINAT M,SEZIN N,et al.Bundled and densified carbon nanotubes (CNT) fabrics as flexible ultra-light weight Li-ion battery anode current collectors[J].Journal of Power Sources,2016,312:109-115.
[10] JUNG Y,JEONG Y C,KIM J H,et al.One step preparation and excellent performance of CNT yarn based flexible micro lithium ion batteries[J].Energy Storage Materials,2016,5:1-7.
[11] HANAEI H,ASSADI M K,SAIDUR R.Highly efficient antireflective and self-cleaning coatings that incorporate carbon nanotubes (CNTs) into solar cells:a review[J].Renewable & Sustainable Energy Reviews,2016,59:620-635.
[12] YADAV S P,SINGH S.Carbon nanotube dispersion in nematic liquid crystals:an overview[J].Progress in Materials Science,2016,80:38-76.
[13] ZENG Z H,CHEN M J,JIN H,et al.Thin and flexible multi-walled carbon nanotube/waterborne polyurethane composites with high-performance electromagnetic interference shielding[J].Carbon,2016,96:768-777.
[14] KIM T,SRIDHARAN I,ZHU B F,et al.Effect of CNT on collagen fiber structure,stiffness assembly kinetics and stem cell differentiation[J].Materials Science & Engineering C,2015,49:281-289.
[15] BUSSY C,KOSTARELOS K.Carbon nanotubes in medicine and biology-safety and toxicology[J].Advanced Drug Delivery Reviews,2013,65(15):2061-2062.
[16] ERICSON L M,FAN H,PENG H,et al.Macroscopic,neat,single-walled carbon nanotube fibers[J].Science,2004,305(5689):1447-1450.
[17] ZHANG S,KOZIOL K K K,KINLOCH I A,et al.Macroscopic fibers of well-aligned carbon nanotubes by wet spinning[J].Small,2008,4(8):1217-1222.
[18] BEHABTU N,YOUNG C C,TSENTALOVICH D E,et al.Strong,light,multifunctional fibers of carbon nanotubes with ultrahigh conductivity[J].Science,2013,339(6116):182-186.
[19] QIU L,WANG X T,TANG D W,et al.Functionalization and densification of inter-bundle interfaces for improvement in electrical and thermal transport of carbon nanotube fibers[J].Carbon,2016,105:248-259.
[20] ZHANG X,JIANG K,FENG C,et al.Spinning and processing continuous yarns from 4-inch wafer scale super-aligned carbon nanotube arrays[J].Advanced Materials,2006,18(12):1505-1510.
[21] TRAN C D.Chapter 7-dry spinning carbon nanotubes into continuous yarn:progress,processing and applications[J].Nanotube Superfiber Materials,2014:211-242.
[22] LI Y L,KINLOCH I A,WINDLE A H.Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis[J].Science,2004,304(5668):276-278.
[23] ZHONG X H,LI Y L,LIU Y K,et al.Continuous multilayered carbonnanotube yarns[J].Advanced Materials,2010,22(6):692-696.
[24] 钟小华,冯建民,瞧小花,等.化学气相反应合成单分散性碳纳米管研究[J].材料工程,2007(10):55-59. ZHONG X H,FENG J M,QIAO X H,et al.Synthesis of surface oxidized and dispersible carbon nanotubes by chemical vapor reactions[J].Journal of Materials Engineering,2007(10):55-59.
[25] LU W B,CHOU T W.Analysis of the entanglements in carbon nanotube fibers using a self-folded nanotube model[J].Journal of the Mechanics and Physics of Solids,2011,59(3):511-524.
[26] LI Y,KROGER M.Computational study on entanglement length and pore size of carbon nanotube buckypaper[J].Applied Physics Letters,2012,100(2):021907-0219075.
[27] MONTINARO N,GSPANN T S,PANTANO A,et al.Stress transfer within CNT fibres:a FEA approach[J].Procedia Engineering,2015,109:435-440.
[28] ZHANG X H,LI Q W.Enhancement of friction between carbon nanotubes:an efficient strategy to strengthen fibers[J].ACS Nano,2010,4(1):312-316.
[29] TANG J,QIN L C,SASAKI T,et al.Compressibility and polygonization of single-walled carbon nanotubes under hydrostatic pressure[J].Physical Review Letters,2000,85(9):1887-1889.
[30] ZHANG X H,SUN D Y,LIU Z F,et al.Structure and phase transitions of single-wall carbon nanotube bundles under hydrostatic pressure[J].Physical Review B,2004,70(3):2199-2208.
[31] YU M F,LOURIE O,DYER M J,et al.Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load[J].Science,2000,287(5453):637-640.
[32] BADAIRE S,PICHOT V,ZAKRI C,et al.Correlation of properties with preferred orientation in coagulated and stretch-aligned single-wall carbon nanotubes[J].Journal of Applied Physics,2004,96(12):7509-7513.
[33] AKIMA N,IWASA Y,BROWN S,et al.Strong anisotropy in the far-infrared absorption spectra of stretch-aligned single-walled carbon nanotubes[J].Advanced Materials,2006,18(9):1166-1169.
[34] WANG Q,DAI J F,LI W X,et al.The effects of CNT alignment on electrical conductivity and mechanical properties of SWNT/epoxy nanocomposites[J].Composites Science and Technology,2008,68(7/8):1644-1648.
[35] LI S,JIN G P,LIANG Z,et al.In-situ characterization of structural changes and the fraction of aligned carbon nanotube networks produced by stretching[J].Carbon,2012,50(10):3859-3867.
[36] KOZIOL K,VILATELA J,MOSIALA A,et al.High-performance carbon nanotube fiber[J].Science,2008,318(5858):1892-1895.
[37] 徐耿.碳纳米管低成本连续成膜技术与应用研究[D].北京:中国科学院大学,2013. XU G.The low-cost continuous preparation and application of carbon nanotube films[D].Beijing:The University of Chinese Academy of Sciences,2013.
[38] BONCEL S,SUNDARAM R M,WINDLE A H,et al.Enhancement of the mechanical properties of directly spun CNT fibers by chemical treatment[J].ACS Nano,2011,5(12):9339-9344.
[39] ALVARENGA J,JAROSZ P R,SCHAUERMAN C M,et al.High conductivity carbon nanotube wires from radial densification and ionic doping[J].Applied Physics Letters,2010,97(18):182106-182108.
[40] ALVARENGA J.Carbon nanotube materials for aerospace wiring[D].Rochester:Rochester Institute of Technology,2010.
[41] LIU G D,ZHAO Y C,DENG K,et al.Highly dense and perfectly aligned single-walled carbon nanotubes fabricated by diamond wire drawing dies[J].Nano Letters,2008,8(4):1071-1075.
[42] JAROSZ P,SCHAUERMAN C,ALVARENGA J,et al.Carbon nanotube wires and cables:near-term applications and future perspectives[J].Nanoscale,2011,3(11):4542-4553.
[43] JAROSZ P R,SHAUKAT A,SCHAUERMAN C M,et al.High-performance,lightweight coaxial cable from carbon nanotube conductors[J].ACS Applied Materials & Interfaces,2012,4(2):1103-1109.
[44] WANG J N,LUO X G,WU T,et al.High-strength carbon nanotube fibre-like ribbon with high ductility and high electrical conductivity[J].Nature Communications,2014,5:3848.
[45] XU W,CHEN Y,ZHAN H,et al.High-strength carbon canotube film from improving alignment and densification[J].Nano Letters,2016,16(2):946-952.
[46] TRAN T Q,ZENG F,PENG L,et al.Super-strong and highly conductive carbon nanotube ribbons from post-treatment methods[J].Carbon,2015,99:407-415.
[47] LIU P,TAN Y F,HU D C M,et al.Multi-property enhancement of aligned carbon nanotube thin films from floating catalyst method[J].Materials & Design,2016,108:754-760.
[48] KOZIOL K K,GARCIA J V,WINDLE A H,et al.Method of increasing the density of carbon nanotube fibres or films:2520707,[P].2012-07-11.
[49] PICK M,WINDLE A H,GARCIA J V et al.Enhancement of the structure and properties of carbon nanotube fibres and films:20100276633[P].2010-06-24.
[50] DENG W L,QIU W,LI Q,et al.Multi-scale experiments and interfacial mechanical modeling of carbon nanotube fiber[J].Experimental Mechanics,2014,54(1):3-10.
[51] CHENG Q F,BAO J W,PARK J G,et al.High mechanical performance composite conductor:multi-walled carbon nanotube sheet/bismaleimide nanocomposites[J].Advanced Functional Materials,2009,19(20):3219-3225.
[52] LIU Q,LI M,GU Y,et al.Highly aligned dense carbon nanotube sheets induced by multiple stretching and pressing[J].Nano-scale,2014,6(8):4338-4344.
[53] SEVERINO J,YANG J M,CARLSON L,et al.Progression of alignment in stretched CNT sheets determined by wide angle X-ray scattering[J].Carbon,2016,100:309-317.
[54] SHAO Y Q,XU F J,LI W,et al.Interfacial strength and debonding mechanism between aerogel-spun carbon nanotube yarn and polyphenylene sulfide[J].Composites Part A:Applied Science and Manufacturing,2016,88:98-105.
[55] CHENG Q,LI M Z,JIANG L,et al.Bioinspired layered composites based on flattened double-walled carbon nanotubes[J].Advanced Materials,2012,24(14):1838-1843.
[56] NAM T H,GOTO K,YAMAGUCHI Y,et al.Improving mechanical properties of high volume fraction aligned multi-walled carbon nanotube/epoxy composites by stretching and pressing[J].Composites Part B:Engineering,2016,85:15-23.
[57] LI Y L,ZHONG X H,WINDLE A H.Structural changes of carbon nanotubes in their macroscopic films and fibers by electric sparking processing[J].Carbon,2008,46(13):1751-1756.
[58] LI W,XU F J,WANG Z Y,et al.Effect of thermal treatments on structures and mechanical properties of aerogel-spun carbon nanotube fibers[J].Materials Letters,2016,183:117-121.
[59] NIVEN J F,JOHNSON M B,JUCKES S M,et al.Influence of annealing on thermal and electrical properties of carbon nanotube yarns[J].Carbon,2015,99:485-490.
[1] 任书杰, 罗飞, 田野, 刘大博, 王克鲁, 鲁世强. A100超高强度钢的流变应力曲线修正与唯象本构关系[J]. 材料工程, 2019, 47(6): 144-151.
[2] 蔡满园, 孙晓刚, 陈玮, 邱治文, 陈珑, 刘珍红, 聂艳艳. 以预锂化多壁碳纳米管为负极的锂离子电容器性能[J]. 材料工程, 2019, 47(5): 145-152.
[3] 孙翱魁, 刘跃军, 陈晴柔. 钼铜复合粉末的致密化及性能[J]. 材料工程, 2019, 47(1): 112-118.
[4] 刘扶庆, 刘夏, 杨庆生. 碳纳米管纤维力-电耦合效应的实验研究[J]. 材料工程, 2018, 46(9): 31-38.
[5] 朱诗尧, 李平, 叶黎城, 郑俊生, 高源. 基于Pt/CNTs催化剂的燃料电池Pt/Buckypaper催化层的制备与表征[J]. 材料工程, 2018, 46(6): 27-35.
[6] 罗晓民, 魏梦媛, 曹敏. 耐腐蚀超疏水铜网的制备及其在油水分离中的应用[J]. 材料工程, 2018, 46(5): 92-98.
[7] 杨守杰, 邢清源, 于海军, 王玉灵, 戴圣龙. 800MPa级Al-Zn-Mg-Cu系合金[J]. 材料工程, 2018, 46(4): 82-90.
[8] 肖代红, 刘彧, 余永新, 周鹏飞, 刘文胜, 马运柱. 放电等离子烧结对TiB2/AlCoCrFeNi复合材料组织与性能的影响[J]. 材料工程, 2018, 46(3): 22-27.
[9] 吴伟, 郝文魁, 李晓刚, 钟平, 董超芳, 刘智勇, 肖葵. 高Cl-环境对M152和17-4PH高强钢应力腐蚀开裂行为的影响[J]. 材料工程, 2018, 46(2): 105-114.
[10] 陈玮, 孙晓刚, 蔡满园, 聂艳艳, 邱治文, 陈珑. 碳纳米管/纤维素复合纸为电极的超级电容器性能[J]. 材料工程, 2018, 46(10): 113-119.
[11] 刘珍红, 孙晓刚, 陈珑, 邱治文, 蔡满园. 碳纳米管纸/纳米硅复合电极的锂离子电池性能[J]. 材料工程, 2018, 46(1): 99-105.
[12] 曾少华, 申明霞, 段鹏鹏, 郑鸿奎, 王珠银. 碳纳米管-玻璃纤维织物增强环氧复合材料的结构与性能[J]. 材料工程, 2017, 45(9): 38-44.
[13] 杨旭东, 陈亚军, 师春生, 赵乃勤. 球磨工艺对原位合成碳纳米管增强铝基复合材料微观组织和力学性能的影响[J]. 材料工程, 2017, 45(9): 93-100.
[14] 毕波, 王学宝. 纳米碳材料在聚合物阻燃中的应用研究进展[J]. 材料工程, 2017, 45(5): 135-144.
[15] 邓凌峰, 彭辉艳, 覃昱焜, 吴义强. 碳纳米管与石墨烯协同改性天然石墨及其电化学性能[J]. 材料工程, 2017, 45(4): 121-127.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn