Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (8): 91-97    DOI: 10.11868/j.issn.1001-4381.2016.001182
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
稀土CeO2对AlCoCuFeMnNi高熵合金组织与性能的影响
彭竹琴1, 李俊魁2, 卢金斌3, 马明星1, 吴玉萍4
1. 中原工学院 材料与化工学院, 郑州 450007;
2. 燕山大学 亚稳材料制备技术与科学国家重点实验室, 河北 秦皇岛 066004;
3. 苏州科技大学 机械工程学院, 江苏 苏州 215009;
4. 河海大学 力学与材料学院, 南京 210098
Effects of Rare Earth CeO2 on Microstructure and Properties of AlCoCuFeMnNi High-entropy Alloys
PENG Zhu-qin1, LI Jun-kui2, LU Jin-bin3, MA Ming-xing1, WU Yu-ping4
1. Department of Material and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China;
2. State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, Hebei, China;
3. School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China;
4. College of Mechanics and Materials, Hohai University, Nanjing 210098, China
全文: PDF(3841 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用等离子熔覆技术,在45钢基体上制备添加稀土CeO2的AlCoCuFeMnNi高熵合金涂层。利用XRD,SEM和EDS研究涂层的显微组织和相组成,并测试其显微硬度和磨损性能。结果表明:合金涂层主要由BCC枝晶和FCC枝晶间组织构成。热力学计算表明,未添加稀土CeO2的涂层中有少量AlCoNi相,而且其枝晶内析出了大量富Fe颗粒,涂层硬度值在260~420HV0.2间呈梯度变化,摩擦因数在0.16~0.57之间。添加1%(质量分数)的稀土CeO2后,基体中Fe元素向涂层内部的扩散程度降低,涂层底部形成一条宽约32μm的富Fe胞晶过渡层,涂层硬度在400HV0.2左右,摩擦因数稳定在0.28~0.31之间,磨损量为添加前的74.4%,细晶强化是涂层磨损性能提高的主要原因。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
彭竹琴
李俊魁
卢金斌
马明星
吴玉萍
关键词 高熵合金CeO2显微组织磨损性能    
Abstract:The AlCoCuFeMnNi high-entropy alloy cladding layer with CeO2 was prepared by plasma cladding technology on 45 steel. The microstructure and phase composition of the cladding layer were investigated by XRD, SEM and EDS, and its microhardness and wear property were also tested. The results show that the phase structure of the cladding layer is mainly composed of BCC dendrites and FCC interdendrites. Thermodynamic calculation shows a small amount of AlCoNi phase exists in the cladding layer without CeO2, and a large number of Fe-rich precipitated particles in the dendrites is observed, the hardness value exhibits gradient changes from 260HV0.2 to 420HV0.2, and their friction coefficient is between 0.16 and 0.57. After adding 1%(mass fraction) CeO2, the Fe diffusion decreases into cladding layer, and a 32μm Fe-rich peritectic transition layer is formed on the bottom of the cladding layer. The average hardness value is about 400HV0.2, and their friction coefficient is relatively stable (0.28-0.31). The mass loss of the layer with CeO2 is 74.4% of that without CeO2. The grain refinement strengthening is the main reason of the improvement of wear properties.
Key wordshigh-entropy alloy    CeO2    microstructure    wear property
收稿日期: 2016-10-05      出版日期: 2018-08-17
中图分类号:  TG174.44  
通讯作者: 彭竹琴(1964-),女,教授,硕士,主要从事离子束表面改性方面的研究工作,联系地址:河南省新郑市双湖经济开发区淮河路1号中原工学院材料与化工学院(450007),E-mail:pengzqzz@126.com     E-mail: pengzqzz@126.com
引用本文:   
彭竹琴, 李俊魁, 卢金斌, 马明星, 吴玉萍. 稀土CeO2对AlCoCuFeMnNi高熵合金组织与性能的影响[J]. 材料工程, 2018, 46(8): 91-97.
PENG Zhu-qin, LI Jun-kui, LU Jin-bin, MA Ming-xing, WU Yu-ping. Effects of Rare Earth CeO2 on Microstructure and Properties of AlCoCuFeMnNi High-entropy Alloys. Journal of Materials Engineering, 2018, 46(8): 91-97.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.001182      或      http://jme.biam.ac.cn/CN/Y2018/V46/I8/91
[1] YEH J W,CHEN S K,LIN S J,et al. Nanostructured high-entropy alloys with multiple principal elements:novel alloy design concepts and outcomes[J]. Advanced Engineering Materials,2004,6(5):299-303.
[2] ZHANG Y,ZUO T T,TANG Z,et al.Microstructures and properties of high-entropy alloys[J]. Progress in Materials Science,2014,61:1-93.
[3] VARALAKSHMI S,KAMARA M,MURTY B S. Synthesis and characterization of nanocrystalline AlFeTiCrZnCu high entropy solid solution by mechanical alloying[J]. Journal of Alloys and Compounds,2008,460(2):253-257.
[4] TAZUDDIN, KRISHANU B, GURAO N P. Deciphering micro-mechanisms of plastic deformation in a novel single phase fcc-based MnFeCoNiCu high entropy alloy using crystallographic texture[J].Materials Science & Engineering:A,2016,657(7):224-233.
[5] CHENG J,LIANG X, WANG Z,et al. Formation and mechanical properties of CoNiCuFeCr high-entropy alloys coatings prepared by plasma transferred arc cladding process[J].Plasma Chemistry and Plasma Processing,2013,33(5):979-982.
[6] KUNCE I,POLANSKI M,KARCZEWSKI K,et al. Microstructural characterisation of high-entropy alloy AlCoCrFeNi fabricated by laser engineered net shaping[J]. Journal of Alloys and Compounds,2015,648(5):751-758.
[7] 梁秀兵,魏敏程,江波,等.高熵合金新材料的研究进展[J].材料工程,2009(12):75-79. LIANG X B,WEI M C,JIANG B,et al. Reaserch progress in advanced materials of high-entropy alloys[J].Journal of Materials Engineering,2009(12):75-79.
[8] SOARE V,BURADA M,CONSTANTIN I,et al. Electrochemical deposition and microstructural characterization of AlCrFeMnNi and AlCrCuFeMnNi high entropy alloy thin films[J]. Applied Surface Science B,2015,358:533-539.
[9] 霍文燚,时海芳,张竞元. 高熵合金熔覆涂层的研究进展[J].材料导报,2014,28(23):76-79. HUO W Y,SHI H F,ZHANG J Y. Progress in high entropy alloy clad coatings[J]. Materials Review,2014,28(23):76-79.
[10] 王智慧,王虎,贺定勇,等.等离子熔覆CoCrCuFeNiMn高熵合金组织研究[J].稀有金属材料与工程,2015,44(3):644-648. WANG Z H,WANG H,HE D Y, et al. Microstructure characterization of CoCrCuFeNiMn high entropy alloys by plasma cladding[J]. Rare Metal Materials and Engineering,2015,44(3):644-648.
[11] 张保森,程江波,徐滨士. 等离子熔覆(CuCoCrFeNi)95B5 高熵合金涂层研究[J].稀有金属材料与工程,2014,43(5):1128-1132. ZHANG B S,CHENG J B,XU B S. (CuCoCrFeNi)95B5 high-entropy alloy coatings prepared by plasma transferred arc cladding process[J]. Rare Metal Materials and Engineering,2014,43(5):1128-1132.
[12] 唐定骧,刘余九,张洪杰,等.稀土金属材料[M].北京:冶金工业出版社,2011:691-701. TANG D X, LIU Y J,ZHANG H J,et al. Rare earth metal materials[M].Beijing:Metallurgical Industry Press,2011:691-701.
[13] 张光耀,王成磊,高原.稀土CeO2在6063Al表面Ni基激光熔覆中的作用机制[J].稀有金属材料与工程,2016,45(4):1003-1007. ZHANG G Y,WANG C L,GAO Y. Mechanism of rare earth CeO2 on the Ni-based laser cladding layer of 6063Al[J]. Rare Metal Materials and Engineering,2016,45(4):1003-1007.
[14] 郑英,王成磊,高原,等.铝合金表面激光熔覆稀土CeO2+Ni60组织及摩擦磨损性能[J].稀有金属,2014,38(5):800-806. ZHENG Y,WANG C L,GAO Y,et al. Microstructure, friction and wear behaviors of laser cladding rare earth CeO2+Ni60 alloys coating on Al alloy surface[J]. Chinese Journal of Rare Metals,2014,38(5):800-806.
[15] 周芳,侯清宇.等离子电弧熔覆Y2O3/钴基合金的组织结构及耐磨性能[J].稀有金属材料与工程,2008,37(2):294-298. ZHOU F,HOU Q Y. Microstructure and wear resistance of plasma arc cladding Y2O3/cobalt-based alloy coating[J]. Rare Metal Materials and Engineering,2008,37(2):294-298.
[16] INOUE A. Classification of bulk metallic glasses by atomic size difference,heat of mixing and period of constituent elements and its application to characterization of the main alloying element[J]. Materials Transactions,2005,46(12):2117.
[17] 王艳苹. AlCrFeCoNiCu多组元合金及其复合材料的组织与性能[D].哈尔滨:哈尔滨工业大学,2009. WANG Y P.Microstructure and properties of AlCrFeCoNiCu multi-principal-element alloys and its composites[D].Harbin:Harbin Institute of Technology,2009.
[18] YEH J W,CHANG S Y,HONG Y D,et al. Anomalous decrease in X-ray diffraction intensities of CuNiAlCoCrFeSi alloy systems with multi-principal elements[J].Materials Chemistry and Physics,2007,103:41-46.
[19] TUNG C C,YEH J W,SHUN T T,et al. On the elemental effect of AlCoCrCuFeNi high-entropy alloy system[J].Materials Letters,2007,61(1):1-5.
[20] 卢金斌,彭竹琴,李俊魁,等.等离子合金化AlCoCrCuFexMnNi高熵合金涂层的组织与性能[J].粉末冶金材料科学与工程,2016,21(3):402-409. LU J B,PENG Z Q,LI J K,et al. Microstructure and properties of AlCoCrCuFexMnNi high-entropy alloy coating prepared by plasma surface alloying[J]. Materials Science and Engineering of Powder Metallurgy,2016,21(3):402-409.
[21] 张松,吴臣亮,王超,等.铁单元素基合金表面激光高熵合金化涂层的制备[J].金属学报,2014,50(5):555-560. ZHANG S,WU C L,WANG C,et al. Synthesis of laser high entropy alloying coating on the surface of single-element Fe base alloy[J]. Acta Metallurgica Sinica,2014,50(5):555-560.
[22] LIU M J,WANG Z,LUAN X W,et al. Effects of CeO2 and Y2O3 on the interfacial diffusion of Ti/Al2O3 composites[J]. Journal of Alloys and Compounds,2016,656:929-935.
[1] 冯景鹏, 余欢, 徐志锋, 蔡长春, 王振军, 胡银生, 王雅娜. 2.5D浅交直联Cf/Al复合材料的显微组织及弯曲和剪切性能[J]. 材料工程, 2020, 48(6): 132-139.
[2] 赵辉, 赵菲, 杨长龙, 韩钰, 靳东, 李红英. 时效处理对Al-Zr-Sc(-Er)合金组织和性能的影响[J]. 材料工程, 2020, 48(5): 112-119.
[3] 叶寒, 黄俊强, 张坚强, 李聪聪, 刘勇. 纳米WC增强选区激光熔化AlSi10Mg显微组织与力学性能[J]. 材料工程, 2020, 48(3): 75-83.
[4] 李国伟, 梁亚红, 陈芙蓉, 韩永全. 7075铝合金脉冲变极性等离子弧焊接头的双级时效行为[J]. 材料工程, 2020, 48(2): 140-147.
[5] 钦兰云, 何晓娣, 李明东, 杨光, 高博文. 退火处理对激光沉积制造TC4钛合金组织及力学性能影响[J]. 材料工程, 2020, 48(2): 148-155.
[6] 元云岗, 康嘉杰, 岳文, 付志强, 朱丽娜, 佘丁顺, 王成彪. 不同温度下等离子渗氮后TC4钛合金的摩擦磨损性能[J]. 材料工程, 2020, 48(2): 156-162.
[7] 韩梅, 喻健, 李嘉荣, 谢洪吉, 董建民, 杨岩. 喷丸对DD6单晶高温合金拉伸性能的影响[J]. 材料工程, 2019, 47(8): 169-175.
[8] 马明星, 王志新, 梁存, 周家臣, 张德良, 朱达川. CeO2掺杂对AlCoCrCuFe高熵合金的组织结构与摩擦磨损性能的影响[J]. 材料工程, 2019, 47(7): 106-111.
[9] 刘文祎, 徐聪, 刘茂文, 肖文龙, 马朝利. 稀土元素Gd对Al-Si-Mg铸造合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(6): 129-135.
[10] 王桂芳, 刘忠侠, 张国鹏. 球磨时间对热压烧结制备TiC-CoCrFeNi复合材料微观组织及力学性能的影响[J]. 材料工程, 2019, 47(6): 94-100.
[11] 宋仁国. 微弧氧化技术的发展及其应用[J]. 材料工程, 2019, 47(3): 50-62.
[12] 王宇, 熊柏青, 李志辉, 温凯, 黄树晖, 李锡武, 张永安. 新型超高强Al-Zn-Mg-Cu合金热压缩变形行为及微观组织特征[J]. 材料工程, 2019, 47(2): 99-106.
[13] 赵云松, 郭媛媛, 赵敬轩, 张晓铁, 刘砚飞, 杨岩, 姜华, 张剑, 骆宇时. 微量Hf对大角度晶界含Re双晶合金高温持久性能的影响[J]. 材料工程, 2019, 47(2): 76-83.
[14] 丁宁, 金士杰, 彭良明, 雷明凯, 林莉. Al0.26CoCrFeNiMn高熵合金再结晶组织演变超声表征[J]. 材料工程, 2019, 47(12): 71-77.
[15] 魏帅虎, 胡茂良, 吉泽升, 许红雨, 王晔. 多道次热挤压制备Al2O3/AZ31复合材料的微观组织与力学性能[J]. 材料工程, 2019, 47(12): 85-91.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn