Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (10): 18-22    DOI: 10.11868/j.issn.1001-4381.2016.001198
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
Ag/InP复合材料的制备、表征及其性能
刘淑玲1,2, 韩晓莉1,2, 仝建波1,2
1 陕西科技大学 教育部轻化工助剂化学与技术重点实验室, 西安 710021;
2 陕西科技大学 化学与化工学院, 西安 710021
Synthesis,Characterization and Properties of Ag/InP Composites
LIU Shu-ling1,2, HAN Xiao-li1,2, TONG Jian-bo1,2
1 Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry(Ministry of Education), Shaanxi University of Science and Technology, Xi'an 710021, China;
2 College of Chemistry and Chemical Industry, Shaanxi University of Science and Technology, Xi'an 710021, China
全文: PDF(2936 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 通过溶剂热法制得磷化铟微晶,然后以光化学还原法成功将Ag单质均匀地复合到磷化铟微晶表面,制备Ag/InP复合材料。采用X射线衍射仪和扫描电子显微镜等对所得产物进行分析,结果表明:复合材料由尺寸为500 nm左右的球状微晶组成,其中20 nm左右的Ag纳米颗粒均匀附着在立方相InP微球表面上,表面较为粗糙。以刚果红为目标降解物,利用荧光和紫外光谱对所得产物进行光催化性能测试,结果发现,与单体InP微晶相比,Ag/InP复合材料形成后,其对刚果红的光催化降解活性提高,这可能是由于Ag纳米颗粒均匀附着后,有效分离InP的光生电子和空穴。此外,对不同银负载量的Ag/InP的光催化性能进行研究。研究表明:当负载量为73.3%时,所得产物的光催化性能最佳,降解率可达64%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘淑玲
韩晓莉
仝建波
关键词 Ag/InP荧光光谱光催化性能复合材料    
Abstract:InP microcrystal was successfully synthesized via a facile hydrothermal route, and then Ag nanoparticles were loaded on the surface of InP microcrystal using UV lamp to reduce silver versions. The as-prepared composites were characterized by X-ray diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM). The results show that Ag/InP composite is composed of lots of spherical microcrystals with a size of 500nm and Ag nanoparticles with a diameter of 20 nm loaded uniformly on the surface of cubic phase InP microspheres,the surface is rough. Using Congo red as model organic pollutant, the photo-catalytic performance of Ag/InP microspheres is further detected by fluorescence and UV-vis spectra. It is found that the as-prepared composite exhibits a superior photo-catalytic degradation activity as compared to InP, which might be the effective separation of electrons and holes after Ag nanoparticles loaded on the surface of InP microspheres.In addition,the photo-catalytic performance of Ag/InP microspheres with different Ag loads was studied,and the results show that when the loading is 73.3%,the photocatalytic activity of the product is the best,and the degradation rate is 64%.
Key wordsAg/InP    fluorescene spectroscopy    photo-catalytic performance    composite
收稿日期: 2016-10-09      出版日期: 2017-10-18
中图分类号:  O614.8  
通讯作者: 刘淑玲(1974-),女,博士,副教授,主要研究方向:功能半导体纳米材料,联系地址:陕西省西安市未央区陕西科技大学化学与化工学院310室(710021),E-mail:shulingliu@aliyun.com     E-mail: shulingliu@aliyun.com
引用本文:   
刘淑玲, 韩晓莉, 仝建波. Ag/InP复合材料的制备、表征及其性能[J]. 材料工程, 2017, 45(10): 18-22.
LIU Shu-ling, HAN Xiao-li, TONG Jian-bo. Synthesis,Characterization and Properties of Ag/InP Composites. Journal of Materials Engineering, 2017, 45(10): 18-22.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.001198      或      http://jme.biam.ac.cn/CN/Y2017/V45/I10/18
[1] 于淑珍,缪国庆,金亿鑫,等. Si衬底上InP纳米线的晶体结构和光学性质[J]. 发光学报, 2010, 31(5):767-772. YU S Z, MIU G Q, JING Y X, et al. Crystal structures and optical properties of InP nanowires on Si substrates[J]. Chinese Journal of Luminescence, 2010, 31(5):767-772.
[2] YANG H Q, YIN W Y, ZHAO H, et al. A complexant-assisted hydrothermal procedure for growing well-dispersed InP nanocrystals[J]. Journal of Physics & Chemistry of Solids, 2008, 69(4):1017-1022.
[3] TAMANG S, LINCHENEAU C, HERMANS Y, et al. Chemistry of InP nanocrystal syntheses[J]. Chemistry of Materials, 2016, 28(1):2491-2506.
[4] ZHAO Y S, YU Y L, GAO F M. InP nanowires synthesized via solvothermal process with CTAB assisted[J]. Journal of Crystal Growth, 2013, 371(1):148-154.
[5] TIAN S S, WEI Z P, LI Y F, et al. Surface state and optical property of sulfur passivated InP[J]. Materials Science in Semiconductor Processing, 2014, 17(1):33-37.
[6] 张振飞,刘海瑞,张华,等. ZnO/Ag微米球的合成与光催化性能[J]. 高等学校化学学报, 2013, 34(12):2827-2833。ZHANG Z F, LIU H R, ZHANG H, et al. Synthesis and photocatalytic properties of ZnO/Ag microspheres[J].Chemical Journal of Chinese Univerisities, 2013, 34(12):2827-2833.
[7] 陈延明,贾宏伟. ZnO/Ag复合纳米粒子的制备与表征[J]. 化学研究与应用, 2014, 12(1):1893-1897. CHEN Y M, JIA H W. Preparation and characterization of ZnO/Ag composites[J]. Chemical Research and Application, 2014, 12(1):1893-1897.
[8] 王岩,刘洋,赵辉,等. 银纳米颗粒及其负载TiO2的制备与应用研究[J]. 广州化工, 2009, 37(9):93-96. WANG Y, LIU Y, ZHAO H, et al. Preparation and application of silver nanoparticles and Ag-loaded TiO2[J]. Guangzhou Chemical Industry, 2009, 37(9):93-96.
[9] 李洪刚,李巧玲,万郁楠,等. 纳米银负载TiO2纤维的制备及其杀菌性能[J]. 化工新型材料, 2014,2(1):177-179. LI H G, LI Q L, WAN Y N, et al. Preparation and antibacterial properties of nano Ag-doped TiO2 fiber[J]. New Chemical Materials, 2014, 2(1):177-179.
[10] 陈淑海,徐耀,吕宝亮,等. Ag负载TiO2纳米管微波辅助水热法制备及其光催化性能[J]. 物理化学学报, 2011, 27(12):2933-2938. CHEN S H, XU Y,LV B L, et al. Preparation of silver loaded TiO2 nanotube arrays and their photocatalytic performance[J]. Acta Physico-Chimica Sinica, 2011, 27(12):2933-2938.
[11] 崔巍巍,刘娅,王宗良,等. 纳米银/二甲基砜/聚乳酸-乙醇酸静电纺丝人工敷料的制备及生物评价[J]. 高等学校化学学报, 2013, 34(3):679-685. CUI W W, LIU Y, WANG Z L, et al. Preparation and biological evaluation of electrospun MSM/PLGA dressing containing nano-silver[J]. Chemical Journal of Chinese Univerisities, 2013, 34(3):679-685.
[12] 许平昌,柳阳,魏建红,等. 溶剂热法制备Ag/TiO2纳米材料及其光催化性能[J]. 物理化学学报, 2010, 26(8):2261-2266. XU P C, LIU Y, WEI J H, et al. Solvothermal preparation of Ag/TiO2 nanoparticles and their photocatalytic activity[J]. Acta Physico-Chimica Sinica, 2010, 26(8):2261-2266.
[13] 张德恺. 纳米银掺杂的稀土荧光材料的制备与荧光增强效应研究[D]. 西安:西北大学, 2012.
[14] 陈益宾,王绪绪,付贤智,等. 偶氮染料刚果红在水中的光催化降解过程[J]. 催化学报, 2005, 26(1):37-42. CHEN Y B, WANG X X, FU X Z, et al. Photocatalytic degradation process of azo dye Congo red in aqueous solution[J]. Chinese Journal of Catalysis, 2005, 26(1):37-42.
[15] MUSHONGA P, OUMA I L A, MADIEHE A M, et al, et al. Synthesis, optical and morphological characterization of doped InP/ZnSe NCs[J]. Physica B Physics of Condensed Matter, 2014, 439(3):189-192.
[16] 姚忠平,李春香,吴昫江,等. Ag负载ZnS光催化剂的制备与光催化制氢[J]. 哈尔滨工业大学学报, 2011, 43(12):100-103。YAO Z P, LI C X, WU X J, et al. Preparation of Ag-doped ZnS photocatalyst and photocalytic property for H2 production[J]. Journal of Harbin Institute of Technology, 2011, 43(12):100-103.
[17] 尹竞,廖高祖,朱冬韵,等. g-C3N4/石墨烯复合材料的制备及光催化活性的研究[J]. 中国环境科学, 2016, 36(3):735-740. YIN J, LIAO G Z, ZHU D Y, et al. Preparation and photocatalytic activity of g-C3N4/rGO composite[J]. China Environmental Science, 2016, 36(3):735-740.
[18] SCHMIDPETER A, LOCHSCHMIDT S, WILLHALM A. Mixed surfactant controlled syntheses of solid Ni2P and Yolk-shell Ni12P5 via a hydrothermal route and their photocatalytic properties[J]. Journal of Alloys & Compounds, 2015, 644(7):140-146.
[1] 许文龙, 陈爽, 张津红, 刘会娥, 朱佳梦, 刁帅, 于安然. 羧甲基纤维素-石墨烯复合气凝胶的制备及吸附研究[J]. 材料工程, 2020, 48(9): 77-85.
[2] 曹弘毅, 姜明顺, 马蒙源, 张法业, 张雷, 隋青美, 贾磊. 复合材料层压板分层缺陷相控阵超声检测参数优化方法[J]. 材料工程, 2020, 48(9): 158-165.
[3] 栾建泽, 那景新, 谭伟, 慕文龙, 申浩, 秦国锋. 铝合金-BFRP粘接接头的服役高温老化力学性能及失效预测[J]. 材料工程, 2020, 48(9): 166-172.
[4] 曾成均, 刘立武, 边文凤, 冷劲松, 刘彦菊. 激励响应复合材料的4D打印及其应用研究进展[J]. 材料工程, 2020, 48(8): 1-13.
[5] 魏化震, 钟蔚华, 于广. 高分子复合材料在装甲防护领域的研究与应用进展[J]. 材料工程, 2020, 48(8): 25-32.
[6] 包建文, 钟翔屿, 张代军, 彭公秋, 李伟东, 石峰晖, 李晔, 姚锋, 常海峰. 国产高强中模碳纤维及其增强高韧性树脂基复合材料研究进展[J]. 材料工程, 2020, 48(8): 33-48.
[7] 肇研, 刘寒松. 连续纤维增强高性能热塑性树脂基复合材料的制备与应用[J]. 材料工程, 2020, 48(8): 49-61.
[8] 陈利, 焦伟, 王心淼, 刘俊岭. 三维机织复合材料力学性能研究进展[J]. 材料工程, 2020, 48(8): 62-72.
[9] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[10] 张波波, 张文娟, 杜雪岩, 王有良. 铁基磁性纳米材料吸附废水中重金属离子研究进展[J]. 材料工程, 2020, 48(7): 93-102.
[11] 高禹, 刘京, 王进, 王柏臣, 崔旭, 包建文. 真空热循环对碳/双马来酰亚胺复合材料低速冲击性能的影响[J]. 材料工程, 2020, 48(7): 154-161.
[12] 冯景鹏, 余欢, 徐志锋, 蔡长春, 王振军, 胡银生, 王雅娜. 2.5D浅交直联Cf/Al复合材料的显微组织及弯曲和剪切性能[J]. 材料工程, 2020, 48(6): 132-139.
[13] 易振华, 冉丽萍, 易茂中. Ni-Cr-P焊膏钎焊C/C复合材料的组织和性能[J]. 材料工程, 2020, 48(5): 127-135.
[14] 张从阳, 李志锐, 方东, 叶永盛, 叶喜葱, 吴海华. SiCp/AZ91D镁基纳米复合材料的室温拉伸行为及塑性变形机理[J]. 材料工程, 2020, 48(4): 108-115.
[15] 张芳芳, 段永川, 高安娜, 姚丹. 基于耦合法的二维三轴编织复合材料热学性能预测及验证[J]. 材料工程, 2020, 48(4): 151-157.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn