Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (4): 77-83    DOI: 10.11868/j.issn.1001-4381.2016.001212
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
不同配比W/Zr活性材料冲击反应实验研究
刘晓俊, 任会兰, 宁建国
北京理工大学 爆炸科学与技术国家重点实验室, 北京 100081
Experimental Study on Impact Response of W/Zr Reactive Materials with Different Proportions
LIU Xiao-jun, REN Hui-lan, NING Jian-guo
State Key laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
全文: PDF(4743 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 以W,Zr和ZrH2为原料,采用热压烧结工艺制备不同配比的W/Zr活性材料。通过分离式霍普金森压杆装置(SHPB)对W/Zr材料进行动态压缩测试并记录其冲击引发反应过程,同时采用X射线衍射仪(XRD)、扫描电镜(SEM)、能谱仪(EDS)等对试件反应前后的物相、成分、微观形貌进行测试表征。结果表明:热压烧结制备的W/Zr活性材料结构较为致密,其相对密度≥87.5%;W/Zr活性材料准静态压缩强度≥1022MPa,破坏应变≤1%,为典型高强脆性材料;3组配比材料动态压缩强度均随应变率增加而提高,当冲击加载达到一定强度时,W/Zr材料破碎并与空气发生剧烈燃烧反应并生成ZrO2
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘晓俊
任会兰
宁建国
关键词 W/Zr活性材料热压冲击反应    
Abstract:Using W, Zr and ZrH2 as raw materials, W/Zr reactive materials with different proportions were prepared by hot-pressing method. The dynamic behavior of W/Zr materials was investigated by a split Hopkinson pressure bar apparatus (SHPB) and the impact-initiated reaction process was recorded. The characteristics of the samples, such as the phase transformation, component and microstructure before and after reaction, were analyzed by X-ray diffraction (XRD), energy dispersive spectroscopy (EDS) and scanning electronic microscopy (SEM). The results show that the W/Zr material sintered by hot-pressing is more compact and the relative density exceeds 87.5%. W/Zr material is a typical brittle material with high strength, the quasi-static compressive strength is higher than 1022MPa and the failure strain is less than 1%. The effect of strain rate on the dynamic compressive strength for all three group samples is obvious, strength increases with strain rate. When the impact load is strong enough, W/Zr material crushes, combusts with air violently, and generates ZrO2.
Key wordsW/Zr    reactive material    hot-pressing    impact-induced reaction
收稿日期: 2016-10-13      出版日期: 2017-04-17
中图分类号:  TB331  
通讯作者: 任会兰(1973-),女,教授,博士,主要从事材料动态力学特性研究,联系地址:北京市海淀区中关村南大街5号北京理工大学爆炸科学与技术国家重点实验室(100081),E-mail:huilanren@bit.edu.cn     E-mail: huilanren@bit.edu.cn
引用本文:   
刘晓俊, 任会兰, 宁建国. 不同配比W/Zr活性材料冲击反应实验研究[J]. 材料工程, 2017, 45(4): 77-83.
LIU Xiao-jun, REN Hui-lan, NING Jian-guo. Experimental Study on Impact Response of W/Zr Reactive Materials with Different Proportions. Journal of Materials Engineering, 2017, 45(4): 77-83.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.001212      或      http://jme.biam.ac.cn/CN/Y2017/V45/I4/77
[1] MONTGOMERY H E. Reactive fragment[P].United States Patent: US 3961576, 1976-06-08.
[2] THADHANI N N. Shock-induced and shock-assisted solid-state chemical reactions in powder mixtures[J]. Journal of Applied Physics, 1994, 76(4): 2129-2138.
[3] National Research Council, Committee on Advanced Energetic Materials and Manufacturing Technologies. Advanced Energetic Materials[M]. Washington: National Academies Press, 2004.
[4] AMES R G, WAGGENER S S. Reaction efficiencies for impact initiated energetic materials[C]//32nd International Pyrotechnics Seminar. Karlsruhe: International Pyrotechnics Society, 2005: 180/1-180/9.
[5] WILLIAM J F. Reactive fragment warhead for enhanced neutralization of mortar, rocket, and missile threats[R]. PA: De Technologies Inc, 2006.
[6] RITTER J J, BRANT A L, COLBURN J W. Characterization techniques employed to determine the energy release of reactive materials[R]. MD: Aberdeen Proving Ground, 2010.
[7] AYDELOTTE B, BRAITHWAITE C H, MCNESBY K, et al. A study of fragmentation in a Ni+Al structural energetic material[J]. AIP Conference Proceedings, 2012, 1426: 1097-1100.
[8] AMATO B, GOTZMER C, KIM S. Applications overview of IHDIV NSWC’s reactive materials[R]. MD: Naval Surface Warfare Center, 2009.
[9] 张先锋,赵晓宁.多功能含能结构材料研究进展[J].含能材料,2009, 17(6): 731-739. ZHANG X F, ZHAO X N. Review on multifunctional energetic structural materials[J]. Journal of Energetic Materials, 2009, 17(6): 731-739.
[10] 安亭,赵凤起,高红旭,等.超级铝热剂的制备及其与双基系推进剂组分的相容性[J].材料工程,2011, (11): 23-28. AN T, ZHAO F Q, GAO H X, et al. Preparation of super thermites and their compatibilities with DB propellants components[J]. Journal of Materials Engineering, 2011,(11):23-28.
[11] NIELSON D B, TRUITT R M, RASMUSSEN N. Low temperature, extrudable, high-density reactive materials[P]. United States Patent: US 0020397A1, 2004-02-05.
[12] 王树山,李朝君,马晓飞.钨合金破片对屏蔽装药撞击起爆的实验研究[J].兵工学报,2001, 22(2): 189-191. WANG S S, LI C J, MA X F. An experimental study on the initiation of covered charge impacted by tungsten[J]. Journal of China Ordnance, 2001, 22(2): 189-191.
[13] 陈伟,赵文天,王健,等.钨锆合金破片毁伤过程研究[J].兵器材料科学与工程,2009, 32(2): 108-110. CHEN W, ZHAO W T, WANG J, et al. Study of damaging process for W-Zr alloy fragment[J]. Ordnance Material Science and Engineering, 2009, 32(2): 108-110.
[14] ZHANG X F, SHI A S, QIAO L, et al. Experimental study on impact-initiated characters of multifunctional energetic structural materials[J]. Journal of Applied Physics, 2013, 113(8): 083508.
[15] LUO P G, WANG Z C, JIANG C L, et al. Experimental study on impact-initiated characters of W/Zr energetic fragments[J]. Materials & Design, 2015, 84: 72-78.
[16] NAGENDER N S V, RAMA R P. Phase Diagrams of Binary Tungsten Alloys[M]. Calcutta: Indian Institute of Metals, 1991.
[17] OKAMOTO H. Desk Handbook: Phase Diagram for Binary Alloys[M]. American Society for Metals, 2000.
[18] 郭星渠,赵彤,王志英,等.用碳化锆细化晶粒制取大块氢化锆[J].原子能科学技术,1980, (5): 641-644. GUO X Q,ZHAO T,WANG Z Y, et al. Preparation of large pieces of zirconium hydride from zirconium carbide by grain refinement[J]. Atomic Energy Science and Technology, 1980, (5): 641-644.
[19] 王鹏飞,徐松林,李志斌,等.微结构对多孔材料应变率效应影响的机理研究[J].爆炸与冲击, 2014, 34(3): 285-291. WANG P F, XU S L, LI Z B, et al. Effect of micro-structure on the strain rate of cellular materials[J]. Explosion and Shock Waves, 2014, 34(3): 285-291.
[20] 任会兰,李尉,刘晓俊,等.钨颗粒增强铝/聚四氟乙烯材料的冲击反应特性[J].兵工学报, 2016, (5): 872-878. REN H L, LI W, LIU X J, et al. Reaction behaviors of Al/PTFE materials enhanced by W particles[J]. Acta Armamentarii, 2016, (5): 872-878.
[21] COVERDILL A, DELANEY C, JENNRICH A, et al. Tungsten combustion in explosively initiated W/Zr mechanical alloys[J]. Journal of Energetic Materials, 2014, 32(3): 135-145.
[22] BADIOLA C, DREIZIN E L. Combustion of micron-sized particles of titanium and zirconium[J]. Proceedings of the Combustion Institute, 2013, 34: 2237-2243.
[23] BAKER F B, STORMS E K, HOLLEY C E. Enthalpy of formation of zirconium carbide[J]. Journal of Chemical and Engineering Data, 1969, 14(2): 244-246.
[1] 李慧中, 杨雷, 王岩, 谭钢, 黄钲钦, 刘敏学. 热挤压态Ni-Co-Cr基粉末高温合金热加工行为[J]. 材料工程, 2020, 48(9): 115-123.
[2] 任书杰, 罗飞, 田野, 刘大博, 王克鲁, 鲁世强. A100超高强度钢的流变应力曲线修正与唯象本构关系[J]. 材料工程, 2019, 47(6): 144-151.
[3] 王宇, 熊柏青, 李志辉, 温凯, 黄树晖, 李锡武, 张永安. 新型超高强Al-Zn-Mg-Cu合金热压缩变形行为及微观组织特征[J]. 材料工程, 2019, 47(2): 99-106.
[4] 倪秀英, 赵军, 孙加林, 李洪江, 侯冠明, 田源. 梯度结构Al2O3-(W,Ti) C-TiN-Mo-Ni纳米金属陶瓷刀具材料的设计及制备[J]. 材料工程, 2018, 46(2): 50-56.
[5] 马琳, 李伟, 白娇娇, 赵丰停. 粉末冶金Ti-14Mo-2.1Ta-0.9Nb-7Zr合金热变形行为[J]. 材料工程, 2018, 46(10): 47-54.
[6] 付平, 刘栩, 戴青松, 张佳琪, 邓运来. 5083铝合金热压缩流变应力曲线修正与本构方程[J]. 材料工程, 2017, 45(8): 76-82.
[7] 王忠军, 付学丹, 朱晶, 周乐, 王洪斌. ZK60和ZK60-1.0Er镁合金热压缩变形和加工图[J]. 材料工程, 2017, 45(3): 102-111.
[8] 张坤, 臧金鑫, 陈军洲, 伊琳娜, 汝继刚, 康唯. 新型Al-Zn-Mg-Cu合金热变形组织演化[J]. 材料工程, 2017, 45(1): 14-19.
[9] 洪起虎, 燕绍九, 杨程, 张晓艳, 戴圣龙. 氧化石墨烯/铜基复合材料的微观结构及力学性能[J]. 材料工程, 2016, 44(9): 1-7.
[10] 谢碧君, 郭逸丰, 徐斌, 孙明月, 李殿中. GH984G18合金热加工图及再结晶图研究[J]. 材料工程, 2016, 44(9): 16-23.
[11] 刘猛, 白书欣, 李顺, 赵恂, 熊德赣. 界面改性对SiCp/Cu复合材料热物理性能的影响[J]. 材料工程, 2016, 44(8): 11-16.
[12] 仇琍丽, 高文理, 陆政, 冯朝辉. 7A85铝合金的热压缩流变行为与显微组织[J]. 材料工程, 2016, 44(1): 33-39.
[13] 陈雅斓, 刘海昌, 滕元成. 热压烧结掺钕钛酸盐组合矿物固化体及其浸出性能[J]. 材料工程, 2015, 43(5): 56-61.
[14] 刘延辉, 姚泽坤, 宁永权, 郭鸿镇. 生物医用TC20钛合金高温变形行为及本构关系[J]. 材料工程, 2014, 0(7): 16-21.
[15] 初雅杰, 李晓泉, 吴申庆, 徐振钦, 杜舜尧. 热压形变参数对AZ31镁合金接头微观组织和力学性能的影响[J]. 材料工程, 2014, 0(6): 35-39.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn