1 National Key Laboratory for Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621999, Sichuan, China 2 China Academy of Engineering Physics, Mianyang 621999, Sichuan, China
The research status on theoretic models and the coupling relationships of Orowan strengthening, dislocation strengthening, load-bearing effect of the reinforcement strengthening and others strengthening are successfully described in this study for particle-reinforced metal matrix composites(MMCs) with a volume fraction lower than 14%. Some conclusions can be obtained:Orowan strengthening and dislocation strengthening stress can be enhanced by increasing volume fraction, decreasing size of reinforcement and improving homogeneous distribution of reinforcement, load-bearing strengthening stress can also be enhanced by increasing volume fraction; yield strength and ductibility of MMCs can be enhanced much more by increasing load-bearing strengthening stress and plastic deformation region and adopting the material design method of metal matrix surrounded by particles with microstructural inhomogenous distribution; grain boundary strengthening and Peierls-Nabarro stress can also affect the yield strength of MMCs as a part of matrix strengthening, solid solution strengthening can be ignored usually; there are three coupling relationships for the sum strengthening contributions:linear summation, multiplicative combination and the root of the sum of the squares. The linear summation and multiplicative combination can be applied to nanoparticle-reinforced MMCs, the linear summation is generally applicable in the case when there are few factors influencing the strength, the multiplicative combination is the most commonly used method. The root of the sum of the squares is applied to micronparticle-reinforced MMCs.
TONG H , HU Z F , ZHANG Z , et al. SiCp modification and their application in aluminum matrix composites[J]. Metallic Functional Materials, 2015, 22 (1): 53- 60.
2
LUAN B F , WU G H , LIU W , et al. High strength Al2O3p/2024Al composites-effect of particles, subgrains and precipitates[J]. Materials Science and Technology, 2005, 21 (12): 1440- 1443.
doi: 10.1179/174328405X71666
3
CHEN L Y , XU J Q , CHOI H , et al. Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles[J]. Nature, 2015, 528 (7583): 539- 548.
doi: 10.1038/nature16445
4
DIXIT M , MISHRA R S , SANKARAN K K . Structure-property correlations in Al 7050 and Al 7055 high-strength aluminum alloys[J]. Materials Science and Engineering:A, 2008, 478 (1/2): 163- 172.
HUANG L J , GENG L . Progress on discontinuously reinforced titanium matrix composites[J]. Journal of Aeronautical Materials, 2014, 34 (4): 126- 138.
9
ERVINA EFZAN M N , KONG H J , KOK C K , et al. Review:effect of alloying element on Al-Si alloys[J]. Advanced Materials Research, 2014, 845 (1/2): 355- 359.
JIA Z H , DING L P , WU S N , et al. Research progress on microstructure and heat treatment of 6000 series aluminum alloys sheet for automotive body[J]. Journal of Materials Engineering, 2014, (12): 104- 113.
doi: 10.11868/j.issn.1001-4381.2014.12.018
11
POZUELO M , CHANG Y W , YANG J M . Effect of diamondoids on the microstructure and mechanical behavior of nanostructured Mg-matrix nanocomposites[J]. Materials Science and Engineering:A, 2015, 633 (1): 200- 208.
12
GOH C S , GUPTA M , WEI J , et al. Characterization of high performance Mg/MgO nanocomposites[J]. Journal of Composite Materials, 2007, 41 (19): 2325- 2335.
doi: 10.1177/0021998307075445
13
SURYANARAYANA C , NASSER Al-AQEELI . Mechanically alloyed nanocomposites[J]. Progress in Materials Science, 2013, 58 (4): 383- 502.
doi: 10.1016/j.pmatsci.2012.10.001
14
GOH C S , WEI J , LEE L C , et al. Properties and deformation behaviour of Mg-Y2O3 nanocomposites[J]. Acta Materiallia, 2007, 55 (15): 5115- 5121.
doi: 10.1016/j.actamat.2007.05.032
15
MIRZA F A , CHEN D L . A unified model for the prediction of yield strength in particulate-reinforced metal matrix nanocomposites[J]. Materials, 2015, 8 (8): 5138- 5153.
doi: 10.3390/ma8085138
16
HUSKINS E L , CAO B , RAMESH K T . Strengthening mechanisms in an Al-Mg alloy[J]. Materials Science and Engineering:A, 2010, 527 (6): 1292- 1298.
doi: 10.1016/j.msea.2009.11.056
17
KUMAR N , MISHRA R S . Additivity of strengthening mechanisms in ultrafine grained Al-Mg-Sc alloy[J]. Materials Science and Engineering, 2013, 580 (3): 175- 183.
18
CHENG L M , POOLE W L , EMBURY J D , et al. The influence of precipitation on the work-hardening behavior of the aluminum alloys AA6111 and AA7030[J]. Metallurgical and Materials Transactions A, 2003, 34 (11): 2473- 2481.
doi: 10.1007/s11661-003-0007-2
19
RAMAKRISHNAN N . An analytical study on strengthening of particulate reinforced metal matrix composites[J]. Acta Materialia, 1996, 44 (1): 69- 77.
doi: 10.1016/1359-6454(95)00150-9
20
HALL E O . The deformation and ageing of mild steel Ⅲ:discussion of results[J]. Proceeding of the Physical Society Section B, 1951, 643 (9): 747- 752.
21
PETCH N J . The cleavage strength of polycrystals[J]. Journal of Iron Steel Institute, 1953, 173 (1): 25- 28.
22
PEIERLS R . The size of a dislocation[J]. Proceedings of the Physical Society London, 1940, 52 (1): 34- 37.
doi: 10.1088/0959-5309/52/1/305
23
NABARRO F R N . Dislocation in a simple cubic lattice[J]. Proceedings of the Physical Society London, 1947, 59 (2): 256- 272.
doi: 10.1088/0959-5309/59/2/309
24
HUTCHINSON C R , NIE J F , GORSSE S . Modeling the precipitation processes and strengthening mechanisms in a Mg-Al-(Zn) AZ91 alloy[J]. Metallurgical and Materials Transactions A, 2005, 36 (8): 2093- 2105.
doi: 10.1007/s11661-005-0330-x
25
ALIZADEH M , BENI H A . Strength prediction of the ARBed Al/Al2O3/B4C nano-composites using Orowan model[J]. Material Research Bulletin, 2014, 59 (5/6): 290294.
26
ZHANG Z , CHEN D L . Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites:a model for predicting their yield strength[J]. Scripta Materialia, 2006, 54 (7): 1321- 1326.
doi: 10.1016/j.scriptamat.2005.12.017
27
HUANG L J , GENG L , PENG H X . Microstructurally inhomogeneous composites:is a homogeneous reinforcement distribution optimal?[J]. Progress in Materials Science, 2015, 71 (1): 96- 168.
28
KIM J H , LEE M G , KIM D , et al. Micromechanics-based strain hardening model in consideration of dislocation-precipitate interactions[J]. Metals and Materials International, 2011, 17 (2): 291- 300.
doi: 10.1007/s12540-011-0417-4
29
DECICCO M , KONISHI H , CAO G , et al. Strong, ductile magnesium-zinc nanocomposites[J]. Metallurgical and Materials Transactions A, 2009, 40 (12): 3038- 3045.
doi: 10.1007/s11661-009-0013-0
30
HUANG L J , GENG L , XU H Y , et al. In situ TiC particles reinforced Ti6Al4V matrix composite with a network reinforcement architecture[J]. Materials Science and Engineering:A, 2011, 528 (6): 2859- 2862.
doi: 10.1016/j.msea.2010.12.046
31
HUANG L J , WANG S , GENG L , et al. Low volume fraction in situ (Ti5Si3+ Ti2C)/Ti hybrid composites with network microstructure fabricated by reaction hot pressing of Ti-SiC system[J]. Composites Science and Technology, 2013, 82 (15): 23- 28.
32
OROWAN E. In symposium on internal stresses in metals and alloys[R]. London: Institute of Metals, 1948: 451.
33
LUAN B F , WU G H , HANSEN N , et al. High strength Al2O3p/6061 Al composites:effect of particles, subgrains and precipitates[J]. Materials Science and Technology, 2007, 23 (2): 233- 236.
doi: 10.1179/174328407X154365
34
BACON D J , KOCKS U F , SCATTERGOOD R O . The effect of dislocation self-interaction on the Orowan stress[J]. Philosophical Magazine, 1973, 28 (6): 1241- 1263.
doi: 10.1080/14786437308227997
35
QUEYREAU S , MONNET G , DEVINCRE B . Orowan strengthening and forest hardening superposition examined by dislocation dynamics simulations[J]. Acta Materialia, 2010, 58 (17): 5586- 5595.
doi: 10.1016/j.actamat.2010.06.028
36
FRIEDEL J . Dislocation[M]. New York: Pergamon Press, 1964.
37
KELLY P M . The effect of particle shape on dispersion hardening[J]. Scripta Metallurgica, 1972, 6 (8): 647- 656.
doi: 10.1016/0036-9748(72)90120-2
38
SCHUELLER R D , WAWNER F E , SACHDEV A K . Strengthening potential of the cubic σ precipitate in Al-Cu-Mg-Si alloys[J]. Journal of Materials Science, 1994, 29 (1): 239- 249.
doi: 10.1007/BF00356599
39
GEROLD V. Precipitation hardening[M]//Nabarro F R N.Dislocations in solids.Amsterdam: North-Holland Publishing Company, 1979, 4: 219-260.
40
FERGUSON J B , LOPEZ H , KONGSHAUG D , et al. Revised Orowan strengthening:effective interparticle spacing and strain field considerations[J]. Metallurgical and Materials Transactions A, 2012, 43 (6): 2110- 2115.
doi: 10.1007/s11661-011-1029-9
41
NIE J F . Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys[J]. Scripta Materialia, 2003, 48 (8): 1009- 1015.
doi: 10.1016/S1359-6462(02)00497-9
42
WIKINSON D S , MAIRE E , FOUGERES R . A model for damage in a clustered particulate composite[J]. Materials Science and Engineering:A, 1999, 262 (1/2): 264- 270.
43
SANATY-ZADEH A . Comparison between current models for the strength of particulate-reinforced metal matrix nanocomposites with emphasis on consideration of Hall-Petch effect[J]. Materials Science and Engineering:A, 2012, 531 (1): 112- 118.
44
JOHNSON L , ASHBY M P . The stress at which dislocations multiply in well-annealed metal crystals[J]. Acta Metallurgica, 1968, 16 (2): 219- 225.
doi: 10.1016/0001-6160(68)90117-X
45
TRIVEDI P B , ASAY J R , GUPTA Y M , et al. Influence of grain size on the tensile response of aluminum under plate-impact loading[J]. Journal of Applied Physics, 2007, 102 (8): 1- 9.
46
PANDA K B , RAVI CHANDRAN K S . Synthesis of ductile titanium-titanium boride (Ti-TiB) composites with a beta-titanium matrix:the nature of TiB formation and composite properties[J]. Metallurgical and Materials Transactions A, 2003, 34 (6): 1371- 1385.
doi: 10.1007/s11661-003-0249-z
47
QIN S , ZHANG G . Preparation of high fracture performance SiC particle-6061 Al/6061 Al composite[J]. Materials Science and Engineering:A, 2000, 279 (1): 231- 236.
48
PENG H X . A review of "consolidation effects on tensile properties of an elemental Al matrix composite"[J]. Materials Science and Engineering:A, 2005, 396 (1/2): 1- 2.
49
WIKINSON D S , POMPE W , OESCHNER M . Modeling the mechanical behaviour of heterogeneous multi-phase materials[J]. Progress in Materials Science, 2001, 46 (3/4): 379- 405.
50
HASHIN Z , SHTRIKMAN S . A variational approach to the theory of the elastic behaviour of multiphase materials[J]. Journal of the Mechanics and Physics of Solids, 1963, 11 (2): 127- 140.
doi: 10.1016/0022-5096(63)90060-7
51
YIN L. Composites microstructures with tailored phase contiguity and spatial distribution[D]. Bristol: University of Bristol, 2009.
52
HUANG L J , GENG L , PENG H X , et al. High temperature tensile properties of in situ TiBw/Ti6Al4V composites with a novel network reinforcement architecture[J]. Materials Science and Engineering:A, 2012, 534 (6): 688- 692.
53
KAVEENDRAN B , WANG G S , HUANG L J , et al. In situ (Al3Zr + Al2O3 np)/2024Al metal matrix composites with novel reinforcement distributions fabricated by reaction hot pressing[J]. Journal of Alloys and Compounds, 2013, 581 (51): 16- 22.
54
HUANG T L , LI C , WU G L , et al. Particle stabilization of plastic flow in nanostructured Al-1%Si alloy[J]. Journal of Materials Science, 2014, 49 (19): 6667- 6673.
doi: 10.1007/s10853-014-8338-5
55
TAKEDA K , NAKADA N , TSUCHIYAMA T , et al. Effect of interstitial elements on Hall-Petch coefficient of ferritic iron[J]. ISIJ International, 2008, 48 (8): 1122- 1125.
doi: 10.2355/isijinternational.48.1122
YU Y. Multiscale simulations of the effect of helium and dislocation on the mechanical properties of HR-2 alloy[D]. Shanghai: Shanghai Jiao Tong University, 2008.
58
MEYERS M A , BENSON D J , VOHRINGER O , et al. Constitutive description of dynamic deformation, physically-based mechanisms[J]. Materials Science and Engineering:A, 2002, 322 (1/2): 194- 216.
59
KOCKS U F , ARGON A S , ASHBY M F . Thermodynamics and kinetics of slip[J]. Progress in Materials Science, 1975, 19, 141- 145.
LIN W S , LI Y Y . Development of particulate reinforced steel matrix composites[J]. Powder Metallurgy Industry, 2001, 11 (5): 25- 29.
doi: 10.3969/j.issn.1006-6543.2001.05.004
SUN Z J , WU Y , ZHANG Z G . Current status and development of ballistic ceramics[J]. Aerospace Materials and Technology, 2000, 30 (5): 10- 15.
doi: 10.3969/j.issn.1007-2330.2000.05.003
62
OKAMOTO H . Al-B (aluminum-boron)[J]. Journal of Phase Equilibria and Diffusion, 2006, 27 (2): 195- 196.
63
ZHAO Y T , ZHANG S L , CHEN G , et al. In-situ (Al2O3+Al3Zr) (np)/Al nanocomposites synthesized by magneto chemical melt reaction[J]. Composites Science and Technology, 2008, 68 (6): 1463- 1470.
doi: 10.1016/j.compscitech.2007.10.036
64
WANG S C , ZHU Z , STARINK M J . Estimation of dislocation densities on cold rolled Al-Mg-Cu-Mn alloys by combination of yield strength data, EBSD and strength models[J]. Journal of Microscopy-Oxford, 2005, 217 (2): 174- 178.
doi: 10.1111/jmi.2005.217.issue-2
65
MIRZA F A , CHEN D L . An analytical model for predicting the yield strength of particulate-reinforced metal matrix nanocomposites with consideration of porosity[J]. Nanoscience and Nanotechnology Letters, 2012, 4 (8): 794- 800.
doi: 10.1166/nnl.2012.1394