Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (6): 24-30    DOI: 10.11868/j.issn.1001-4381.2016.001215
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
激光熔覆原位自生TiC颗粒增强镍基复合涂层的组织与耐磨性
马世榜1,2, 夏振伟1, 徐杨1, 施焕儒1, 王旭1, 郑越1
1 中国农业大学 工学院, 北京 100083;
2 南阳师范学院 机电工程学院, 河南 南阳 473061
Microstructure and Abrasion Resistance of In-situ TiC Particles Reinforced Ni-based Composite Coatings by Laser Cladding
MA Shi-bang1,2, XIA Zhen-wei1, XU Yang1, SHI Huan-ru1, WANG Xu1, ZHENG Yue1
1 College of Engineering, China Agricultural University, Beijing 100083, China;
2 College of Mechanic and Electronic Engineering, Nanyang Normal University, Nanyang 473061, Henan, China
全文: PDF(7329 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用预置粉末法在45钢表面进行激光熔覆镍基Ni60A+x%(SiC+Ti)(质量分数,下同)复合粉末涂层的实验研究。使用往复式磨损试验机对不同涂层材料的熔覆层进行干摩擦磨损实验,利用金相显微镜、扫描电镜(SEM)观察和分析熔覆层的显微组织与磨损形貌。结果表明:复合粉末通过原位反应生成弥散分布的TiC颗粒增强复合涂层,随着(SiC+Ti)含量的增加,颗粒状TiC的尺寸和数目逐渐增加;复合粉(SiC+Ti)含量达到60%时,微观组织有气孔和夹杂缺陷;复合粉(SiC+Ti)含量为48%时,熔覆层耐磨性最佳;复合涂层的磨损主要为磨粒磨损,机理为微观切削和挤压剥落。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马世榜
夏振伟
徐杨
施焕儒
王旭
郑越
关键词 激光熔覆原位自生TiC耐磨性强化机理    
Abstract:Laser cladding of Ni-based Ni60A+x% (SiC+Ti)(mass fraction,the same below) composite powder coating on 45 steel substrate was studied by using the method of preplaced powder. The dry friction and wear experiments of different material coatings were carried out by reciprocating friction wear tester. The microstructure and worn morphology of cladding layers were observed and analyzed by using metallographic microscope, scanning electron microscope(SEM) respectively. The results show that the prepared composite coating with dispersively distributed TiC enhanced particles are obtained in-situ, the size and number of the granular TiC gradually increase with the increase of the composite powder SiC+Ti. When the composite powder SiC+Ti reaches 60%, pores and inclusions defects exist in microstructure. When the composite powder SiC+Ti reaches 48%, wear resistance of cladding coating is the best. The wear behavior of the composite coating is abrasive wear, and the mechanism is micro cutting and extrusion spalling.
Key wordslaser cladding    reaction in-situ    TiC    wear resistance    strengthening mechanism
收稿日期: 2016-10-13      出版日期: 2017-06-20
中图分类号:  TG115.5+8  
通讯作者: 徐杨(1963-),女,教授,博士生导师,从事农业机械耐磨材料的研究,联系地址:北京市海淀区清华东路17号中国农业大学东校区工学院565室(100083),E-mail:xuyang@cau.edu.cn     E-mail: xuyang@cau.edu.cn
引用本文:   
马世榜, 夏振伟, 徐杨, 施焕儒, 王旭, 郑越. 激光熔覆原位自生TiC颗粒增强镍基复合涂层的组织与耐磨性[J]. 材料工程, 2017, 45(6): 24-30.
MA Shi-bang, XIA Zhen-wei, XU Yang, SHI Huan-ru, WANG Xu, ZHENG Yue. Microstructure and Abrasion Resistance of In-situ TiC Particles Reinforced Ni-based Composite Coatings by Laser Cladding. Journal of Materials Engineering, 2017, 45(6): 24-30.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.001215      或      http://jme.biam.ac.cn/CN/Y2017/V45/I6/24
[1] 吕维洁,郭相龙,王立强,等. 原位自生非连续增强钛基复合材料的研究进展[J]. 航空材料学报,2014,34(4):139-146. LU W J,GUO X L,WANG L Q,et al. Progress on in-situ discontinuously reinforced titanium matrix composites[J]. Journal of Aeronautical Materials,2014,34(4):139-146.
[2] WENG F, CHEN C Z, YU H J. Research status of laser cladding on titanium and its alloys:a review[J]. Materials & Design, 2014,58:412-425.
[3] 靳振西,张成成,邓国坚,等. 激光快速制备TixAly-TiN复合涂层[J]. 航空材料学报,2016,36(5):44-51. JIN Z X, ZHANG C C, DENG G J, et al. Laser rapid preparation TixAly-TiN composite coating[J]. Journal of Aeronautical Materials,2016,36(5):44-51.
[4] CAO Y B, REN H T, HU C S, et al. In-situ formation behavior of NbC-reinforced Fe-based laser cladding coatings[J]. Materials Letters, 2015,147:61-63.
[5] LIU K, LI Y J,WANG J, et al. Effect of high dilution on the in-situ synthesis of Ni-Zr/Zr-Si(B,C) reinforced composite coating on zirconium alloy substrate by laser cladding[J]. Materials & Design, 2015, 87:66-74.
[6] 杨胶溪,张健全,常万庆,等. 激光熔覆WC/Ni基复合涂层高温滑动干摩擦磨损性能[J]. 材料工程,2016,44(6):110-116. YANG J X,ZHANG J Q,CHANG W Q, et al. High temperature dry sliding friction and wear performance of laser cladding WC/Ni composite coating[J]. Journal of Materials Engineering,2016,44(6):110-116.
[7] TECHEL A, BERGER L M, OWOTNY S. Microstructure of advanced TiC-based coatings prepared by laser cladding[J]. Journal of Thermal Spray Technology, 2007,16(3):374-380.
[8] 袁有录,李铸国. 原位自生WC增强Fe基涂层的组织及干滑动摩擦磨损性能[J]. 材料工程,2016,44(5):47-53. YUAN Y L, LI Z G. Microstructure and dry sliding friction and wear properties of in-situ synthesized WC reinforced Fe-based coating[J]. Journal of Materials Engineering,2016,44(5):47-53.
[9] 戴礼权,何国球,吕世泉,等. 干滑动摩擦下SiC/Al复合材料摩擦磨损性能[J]. 航空材料学报,2016,36(6):61-67. DAI L Q,HE G Q,LÜ S Q, et al. Tribological investigation of SiC/Al composite under dry sliding friction[J]. Journal of Aeronautical Materials,2016,36(6):61-67.
[10] 张现虎,晁名举,梁二军,等. 激光熔覆原位生成TiC-ZrC颗粒增强镍基复合涂层[J].中国激光,2009,36(4):998-1006. ZHANG X H, CHAO M J, LIANG E J, et al. In-situ synthesis of TiC-ZrC particulate reinforced Ni-based composite coatings by laser cladding[J]. Chinese Journal of Lasers, 2009,36(4):998-1006.
[11] DU B S, ZOU Z D, WANG X H, et al. In-situ synthesis of TiB2/Fe composite coating by laser cladding[J]. Materials Letters, 2008,62(4-5):689-691.
[12] GAO Y L, WANG C S, YAO M, et al. The resistance to wear and corrosion of laser-cladding Al2O3 ceramic coating on Mg alloy[J]. Applied Surface Science, 2007, 253(12):5306-5311.
[13] 郭永强,孙荣禄,雷贻文,等. 激光熔覆原位自生TiC颗粒增强Ni基复合涂层的组织与性能[J]. 材料热处理学报,2009,30(3):178-182. GUO Y Q, SUN R L, LEI Y W, et al. Microstructure and properties of in-situ formed TiC particle reinforced Ni-base composite coating by laser cladding[J]. Transactions of Materials and Heat Treatment, 2009,30(3):178-182.
[14] 王维夫,王茂才,孙凤久. 激光熔覆钛基复合涂层中原位自生TiC的形态特征与生长机制[J].金属热处理,2009,34(2):65-69. WANG W F,WANG M C, SUN F J. Morphological characteristics and growth mechanism of in-situ TiC in titanium-base composite coating formed by laser cladding[J].Heat Treatment of Metals, 2009,34(2):65-69.
[15] 李小新.原位自生(TiC+TiB)/Ti复合材料的制备及力学性能研究[D]. 哈尔滨:哈尔滨工业大学,2013. LI X X. Research on fabrication and mechanical properties of in-situ (TiC+TiB)/Ti composites[D]. Harbin:Harbin Institute of Technology, 2013.
[16] 吴朝锋,马明星,刘文今,等.激光原位制备复合碳化物颗粒增强铁基复合涂层及其耐磨性的研究[J]. 金属学报, 2009, 45(8):1013-1018. WU C F, MA M X, LIU W J,et al. Study on wear resistance of laser cladding Fe-based composite coatings reinforced byin-situmultiple carbide particles[J]. Acta Metallurgica Sinica, 2009,45(8):1013-1018.
[17] 马世榜,苏彬彬,王旭,等. 基于激光熔覆SiC/Ni复合涂层的耐磨性[J]. 材料工程,2016,44(1):77-82. MA S B, SU B B, WANG X, et al. Wear resistance of SiC/Ni composite coating based on laser cladding[J]. Journal of Materials Engineering, 2016,44(1):77-82.
[18] 赫庆坤,王勇,陶德灿,等. 石墨加入量对激光熔覆原位合成TiC/镍基涂层裂纹敏感性的影响[J].机械工程材料,2009,33(2):67-70. HE Q K, WANG Y, TAO D C, et al. Influence of carbon content on crack sensitivity of TiC/Ni coatings prepared by in-situ fabrication through laser cladding[J]. Materials for Mechanical Engineering, 2009,33(2):67-70.
[1] 柯鹏, 蔡飞, 胡凯, 张世宏, 王硕煜, 朱广宏, 倪振航, 胡小红. 黏结层及真空退火对NiCr-30% Cr3C2金属-陶瓷喷涂层性能的影响[J]. 材料工程, 2019, 47(7): 144-150.
[2] 王勇刚, 刘和剑, 回丽, 职山杰, 刘海青. 激光熔覆原位自生碳化物增强自润滑耐磨复合涂层的高温摩擦学性能[J]. 材料工程, 2019, 47(5): 72-78.
[3] 陈林, 陈文静, 黄强, 熊中. 超声振动对EA4T钢激光熔覆质量和性能的影响[J]. 材料工程, 2019, 47(5): 79-85.
[4] 张航, 路媛媛, 王涛, 鲁亚冉, 刘德健. 激光熔覆WC/H13-Inconel625复合材料的冲击韧性与磨损性能[J]. 材料工程, 2019, 47(4): 127-134.
[5] 周仲炎, 庄宿国, 杨霞辉, 王勉, 罗迎社, 刘煜, 刘秀波. Ti6Al4V合金激光原位合成自润滑复合涂层高温摩擦学性能[J]. 材料工程, 2019, 47(3): 101-108.
[6] 杨勇维, 符寒光, 鞠江, 王开明, 雷永平, 朱礼龙, 江亮. 铬对高钒耐磨合金凝固组织和耐磨性能的影响[J]. 材料工程, 2018, 46(9): 122-130.
[7] 刘秀波, 周仲炎, 翟永杰, 乔世杰, 徐江宁, 罗迎社, 涂溶. 热处理对激光熔覆钛基复合涂层组织和微动磨损性能的影响[J]. 材料工程, 2018, 46(5): 79-85.
[8] 龚玉兵, 王善林, 李宏祥, 柯黎明, 陈玉华, 马彬. 脉冲宽度对激光熔覆FeSiB涂层组织与硬度的影响[J]. 材料工程, 2018, 46(3): 74-80.
[9] 叶想平, 李英雷, 翁继东, 蔡灵仓, 刘仓理. 颗粒增强金属基复合材料的强化机理研究现状[J]. 材料工程, 2018, 46(12): 28-37.
[10] 唐仕光, 陈泉志, 蒋智秋, 童庆, 董婉冰, 李伟洲. 激光重熔处理对铝合金微弧氧化膜组织与性能的影响[J]. 材料工程, 2018, 46(12): 157-164.
[11] 闫晓玲, 曹勇, 董世运. 激光熔覆再制造涂层应力超声无损评价[J]. 材料工程, 2018, 46(10): 96-103.
[12] 田兵, 龚建勋, 刘江晴, 吴慧剑. Si对明弧堆焊合金M7C3相及耐磨性的影响[J]. 材料工程, 2017, 45(4): 34-40.
[13] 李佳, 盛光敏, 黄利. Ti/Nb作中间层脉冲加压扩散连接TiC金属陶瓷与不锈钢[J]. 材料工程, 2017, 45(3): 54-59.
[14] 赵龙志, 刘武, 刘德佳, 赵明娟, 张坚. SiC含量对激光熔覆SiC/Ni60A复合涂层显微组织和耐磨性能的影响[J]. 材料工程, 2017, 45(3): 88-94.
[15] 王红星, 毛向阳, 沈彤, 张月. 纳米TiC颗粒对Ni-TiC复合镀层组织与性能的影响[J]. 材料工程, 2017, 45(1): 52-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn