Please wait a minute...
 
2222材料工程  2018, Vol. 46 Issue (12): 110-116    DOI: 10.11868/j.issn.1001-4381.2016.001247
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
硅溶胶改性水性丙烯酸树脂对镀锌三价铬钝化膜的封闭作用
孙伟, 朱立群, 李卫平, 刘慧丛()
北京航空航天大学 材料科学与工程学院, 北京 100191
Sealing Effects of Silica Sol Modified Waterborne Acrylic Resin on Chromium Trivalent Passivation Film of Galvanized Steel
Wei SUN, Li-qun ZHU, Wei-ping LI, Hui-cong LIU()
School of Materials Science and Engineering, Beihang University, Beijing 100191, China
全文: PDF(35837 KB)   HTML ( 28 )  
输出: BibTeX | EndNote (RIS)      
摘要 

为提高镀锌三价铬钝化膜的耐腐蚀性能,研究硅溶胶改性水性丙烯酸树脂对镀锌三价铬钝化膜的封闭效果。通过Tafel极化曲线、电化学交流阻抗谱(EIS)、盐水浸泡实验和中性盐雾实验(NSS)测试镀锌钝化膜封闭后的耐腐蚀性能和200℃高温处理后的热稳定性,采用SEM,FT-IR及TGA对封闭膜层的形貌及特性进行表征。结果表明:与未改性和未封闭的镀锌钝化膜相比,硅溶胶改性的镀锌钝化封闭剂可以显著提高钝化膜的阻抗值,有效减缓镀锌钝化膜在盐水中的腐蚀速率,延长耐盐雾腐蚀时间,且硅溶胶的引入可以显著提高镀锌钝化膜封闭后的耐热性能。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙伟
朱立群
李卫平
刘慧丛
关键词 镀锌钝化膜水性丙烯酸树脂硅溶胶改性耐腐蚀性能封闭    
Abstract

In order to improve the corrosion resistance of the trivalent chromium passivation film on galvanized steel, the effects of silica sol modified waterborne acrylic resin on the passivation film were studied. The corrosion resistance and the thermal stability of the passivation film were measured by Tafel polarization curve, electrochemical impedance spectroscopy (EIS), salt water immersion test and neutral salt spray test (NSS), and the morphology and properties of the film were characterized by SEM, FT-IR and TGA. The results show that compared with the unmodified and unsealed passivation film on galvanized steel, silica sol modified sealant can significantly improve the resistance of the passivation film, effectively slow down the corrosion rate of the passivation film in 3.5%NaCl solution, and extend the enduring time under salt spray test; and the heat resistance of the passivation film can be improved remarkably by the introduction of silica sol.

Key wordspassive film on galvanized steel    waterborne acrylic resin    silica sol modified    corrosion resistance    sealing
收稿日期: 2016-10-18      出版日期: 2018-12-18
中图分类号:  TG178  
基金资助:国家自然科学基金(51401011)
通讯作者: 刘慧丛     E-mail: liuhc@buaa.edu.cn
作者简介: 刘慧丛(1975-), 女, 副教授, 博士, 从事功能性材料及涂镀层的腐蚀与防护研究, 联系地址:北京市海淀区学院路37号北京航空航天大学材料科学与工程学院(100191), E-mail:liuhc@buaa.edu.cn
引用本文:   
孙伟, 朱立群, 李卫平, 刘慧丛. 硅溶胶改性水性丙烯酸树脂对镀锌三价铬钝化膜的封闭作用[J]. 材料工程, 2018, 46(12): 110-116.
Wei SUN, Li-qun ZHU, Wei-ping LI, Hui-cong LIU. Sealing Effects of Silica Sol Modified Waterborne Acrylic Resin on Chromium Trivalent Passivation Film of Galvanized Steel. Journal of Materials Engineering, 2018, 46(12): 110-116.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.001247      或      http://jme.biam.ac.cn/CN/Y2018/V46/I12/110
Fig.1  不同封闭状态的镀锌钝化试件在3.5%NaCl水溶液中的Tafel极化曲线
Parameter Bare PAC Si-PAC
Ecorr/V -1.160 -1.067 -1.003
Icorr /(A·cm-2) 5.854×10-6 6.202×10-8 7.328×10-9
Table 1  不同封闭状态的镀锌钝化试件在3.5%NaCl水溶液中的自腐蚀电位与腐蚀电流密度
Fig.2  不同封闭状态的镀锌钝化试件在3.5%NaCl水溶液中的交流阻抗谱及拟合图
Fig.3  丙烯酸树脂封闭镀锌钝化膜的EIS分析等效电路图
Sample Re/
(Ω·cm2)
Cc/
(F·cm-2)
Rc/
(Ω·cm2)
CPE Rt/
(Ω·cm2)
Cp/
(F·cm-2)
Rp/
(Ω·cm2)
Qdl/(Ω-1·cm-2·Sn) n
PAC 22.88 1.99×10-9 4.64×104 7.60×10-7 0.341 9.68×105 3.05×10-8 9.14×104
Si-PAC 25.10 3.74×10-9 1.05×105 1.99×10-7 0.503 2.06×106 1.21×10-8 1.15×106
Table 2  电化学阻抗谱参数拟合结果
Fig.4  不同封闭状态的镀锌钝化试样在3.5%NaCl水溶液中的浸泡腐蚀速率
Sample Before heated After heated
Bare 22 10
PAC 72 64
Si-PAC 120 144
Table 3  不同封闭状态的镀锌钝化试件耐中性盐雾实验时间(h)
Fig.5  不同封闭状态镀锌钝化膜高温处理前后的SEM照片
(a)未封闭;(b)PAC封闭;(c)Si-PAC封闭; (1)高温处理前; (2)高温处理后
ElementPAC Si-PAC
Mass fraction% Atom fraction% Mass fraction% Atom fraction%
C 66.68 86.54 68.93 84.89
O 7.40 7.21 9.89 9.14
Si - - 3.69 1.94
Cr 1.04 0.31 1.11 0.32
Zn 24.88 5.93 16.38 3.71
Table 4  不同封闭状态的镀锌钝化膜层表面元素含量
Fig.6  红外吸收光谱图
Fig.7  封闭膜层TG曲线
Sample Before heated After heated
PAC 61.3 65.6
Si-PAC 72.6 84.1
Table 5  PAC与Si-PAC在高温处理前后的交联度(%)
1 孔纲, 郑亚敏, 冯金良, 等. 镀锌层三价铬钝化研究进展[J]. 电镀与涂饰, 2013, 32 (6): 40- 42.
doi: 10.3969/j.issn.1004-227X.2013.06.011
1 KONG G , ZHENG Y M , FENG J L , et al. Research status of trivalent chromium passivation for zinc coatings[J]. Electroplating & Finishing, 2013, 32 (6): 40- 42.
doi: 10.3969/j.issn.1004-227X.2013.06.011
2 TOMACHUK C R , ELSNER C I , SARLI A R D , et al. Corrosion resistance of Cr(Ⅲ) conversion treatments applied on electrogalvanised steel and subjected to chloride containing media[J]. Materials Chemistry & Physics, 2010, 119 (1/2): 19- 29.
3 GARCÍA-ANTÓN J , FERNÁNDEZ-DOMENE R M , SÁNCHEZ-TOVAR R , et al. Improvement of the electrochemical behaviour of Zn-electroplated steel using regenerated Cr (Ⅲ) passivation baths[J]. Chemical Engineering Science, 2014, 111 (8): 402- 409.
4 WILCOX G D . Replacing chromates for the passivation of zinc surfaces[J]. Transactions of the Institute of Metal Finishing, 2003, 81 (1): B13- B15.
doi: 10.1080/00202967.2003.11871474
5 袁诗璞. 镀锌三价铬钝化应用的若干问题[J]. 涂装与电镀, 2011, (1): 32- 37.
5 YUAN S P . Several problems about use of Cr3+ passivating for galvanizing[J]. Painting and Electroplating, 2011, (1): 32- 37.
6 王雷, 张东. 镀锌层三价铬钝化研究进展[J]. 电镀与精饰, 2008, 30 (5): 15- 19.
doi: 10.3969/j.issn.1001-3849.2008.05.005
6 WANG L , ZHANG D . Synthesis and characterization of complex acrylate resin coating on galvanized steel sheet[J]. Corrosion Science and Protection Technology, 2008, 30 (5): 15- 19.
doi: 10.3969/j.issn.1001-3849.2008.05.005
7 唐肖楠.热镀锌层三价铬钝化及着色研究[D].天津: 河北工业大学, 2014.
7 TANG X N. The research on trivalent chromium passivation and colored technology on hot dip galvanized layer[D]. Tianjin: Hebei University of Technology, 2014.
8 韩波. 浅析金属制品表面化学处理方法的优化和改进[J]. 中国科技纵横, 2012, (2): 82.
doi: 10.3969/j.issn.1671-2064.2012.02.074
8 HAN B . Analysis on optimization and improvement of surface chemical treatment methods for metal products[J]. China Science & Technology Overview, 2012, (2): 82.
doi: 10.3969/j.issn.1671-2064.2012.02.074
9 于元春, 李宁, 胡会利, 等. 无铬钝化与三价铬钝化的研究进展[J]. 表面技术, 2005, 34 (5): 6- 9.
doi: 10.3969/j.issn.1001-3660.2005.05.002
9 YU Y C , LI N , HU H L , et al. Research development of non-chromate and tri-chromium passivation[J]. Surface Technology, 2005, 34 (5): 6- 9.
doi: 10.3969/j.issn.1001-3660.2005.05.002
10 BELLEZZE T , ROVENTI G , FRATESI R . Electrochemical study on the corrosion resistance of Cr Ⅲ-based conversion layers on zinc coatings[J]. Surface & Coatings Technology, 2002, 155 (2): 221- 230.
11 WYNN P C , BISHOP C V . Replacing hexavalent chromium in passivations on zinc plated parts[J]. Products Finishing, 2001, 65 (5): 55- 62.
12 UPTON P . The effect of sealers on increase of corrosion resistance of chromate-free passivates on zinc & zinc alloys[J]. Plating & Surface Finishing, 2001, 88 (2): 68- 71.
13 车淳山, 黄清, 孔纲, 等. 水性丙烯酸树脂作为金属表面钝化剂的研究现状[J]. 材料保护, 2014, 47 (2): 60- 63.
13 CHE C S , HUANG Q , KONG G , et al. Research status of waterborne acrylic resin as passivation agent for metal surface[J]. Materials Protection, 2014, 47 (2): 60- 63.
14 秦少雄, 晏高翔. 水性丙烯酸酯类防腐涂料性能研究[J]. 长江大学学报自然科学版:理工卷, 2012, 9 (1): 6- 8.
14 QIN S X , YAN G X . Study on properties of waterborne acrylic anticorrosion coatings[J]. Journal of Yangtze University (Nat Sci Edit) Sci&Eng, 2012, 9 (1): 6- 8.
15 李渊, 秦立光, 赵文杰, 等. SiO2-丙烯酸树脂复合涂层的电化学行为[J]. 材料保护, 2016, 49 (1): 23- 27.
15 LI Y , QIN L G , ZHAO W J , et al. Electrochemical behavior of SiO2-acrylic resin composite coatings[J]. Materials Protection, 2016, 49 (1): 23- 27.
16 DONG R , LIU L . Preparation and properties of acrylic resin coating modified by functional graphene oxide[J]. Applied Surface Science, 2016, 368, 378- 387.
doi: 10.1016/j.apsusc.2016.01.275
17 YANG W , ZHU L , CHEN Y , et al. Surface topography and hydrophobicity of waterborne fluorinated acrylic/silica hybrid coatings[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2015, 484, 62- 69.
18 KHELIFA F , HABIBI Y , BENARD F , et al. 16-smart acrylic coatings containing silica particles for corrosion protection of aluminum and other metals[J]. Handbook of Smart Coatings for Materials Protection, 2014, 423- 458.
19 WANG S , LI W , HAN D , et al. Preparation and application of a waterborne acrylic copolymer-siloxane composite:improvement on the corrosion resistance of zinc-coated NdFeB magnets[J]. Rsc Advances, 2015, 5 (99): 11- 12.
20 黄东勤, 张子勇. 含有机硅和丙烯酸树脂的有机-无机杂化涂料[J]. 涂料工业, 2006, 36 (2): 25- 28.
doi: 10.3969/j.issn.0253-4312.2006.02.008
20 HUANG D Q , ZHANG Z Y . Organic-inorganic hybrid coatings containing silicone and acrylic resin[J]. Paint & Coatings Industry, 2006, 36 (2): 25- 28.
doi: 10.3969/j.issn.0253-4312.2006.02.008
21 刘兢科, 刘孝. 硅烷偶联剂作用下有机-无机杂化涂料的研制[J]. 涂料工业, 2009, 39 (6): 62- 64.
doi: 10.3969/j.issn.0253-4312.2009.06.017
21 LIU J K , LIU X . Development of organic-inorganic hybrid coatings with silane coup line agent[J]. Paint & Coatings Industry, 2009, 39 (6): 62- 64.
doi: 10.3969/j.issn.0253-4312.2009.06.017
22 陈伟, 蒋梅燕, 伍廉奎, 等. 硅烷改性聚合物防护涂层的研究进展[J]. 腐蚀科学与防护技术, 2015, (1): 85- 89.
22 CHEN W , JIANG M Y , WU L K , et al. Research progress of silane modified polymer protective coatings[J]. Corrosion Science and Protection Technology, 2015, (1): 85- 89.
23 张莹娇, 陈姚, 于欣伟, 等. 硅溶胶/有机硅改性丙烯酸树脂复合材料的制备[J]. 电镀与涂饰, 2014, 33 (2): 66- 69.
doi: 10.3969/j.issn.1004-227X.2014.02.006
23 ZHANG Y J , CHEN Y , YU X W , et al. Preparation of silica sol/organic silicon modified acrylic resin composite materials[J]. Electroplating & Finishing, 2014, 33 (2): 66- 69.
doi: 10.3969/j.issn.1004-227X.2014.02.006
24 郝敬丽, 高永晶, 董泽华. 硅氧烷硫化物与铈盐复合膜对铝合金耐点蚀能力的影响[J]. 中国腐蚀与防护学报, 2015, 35 (6): 525- 534.
24 HAO J L , GAO Y J , DONG Z H . Effects of siloxane sulfide and cerium salt complex conversion film on corrosion resistance of aluminum alloy[J]. Journal of Chinese Society for Corrosion and Protection, 2015, 35 (6): 525- 534.
25 HAO G , ZHU L , YANG W , et al. Investigation on the film surface and bulk properties of fluorine and silicon contained polyacrylate[J]. Progress in Organic Coatings, 2015, 85, 8- 14.
doi: 10.1016/j.porgcoat.2015.02.021
26 LIU M , MAO X , ZHU H , et al. Water and corrosion resistance of epoxy-acrylic-amine waterborne coatings:effects of resin molecular weight, polar group and hydrophobic segment[J]. Corrosion Science, 2013, 75 (7): 106- 113.
27 赵名师, 吴明, 董有智. EIS分析在防腐涂层评价中的应用[J]. 油气储运, 2007, 26 (10): 39- 42.
doi: 10.3969/j.issn.1000-8241-D.2007.10.011
27 ZHAO M S , WU M , DONG Y Z . The application of EIS analysis in evaluation of pipeline coating[J]. Oil&Gas Storage and Transportation, 2007, 26 (10): 39- 42.
doi: 10.3969/j.issn.1000-8241-D.2007.10.011
28 HAMMAMI O , DHOUIBI L , BERÇOT P , et al. Effect of phosphorus doping on some properties of electroplated Zn-Ni alloy coatings[J]. Surface & Coatings Technology, 2013, 219, 119- 125.
29 曹楚南. 电化学阻抗谱导论[M]. 科学出版社, 2002.
30 ZAFAR S , ZAFAR F , RIAZ U , et al. Synthesis, characterization, and anticorrosive coating properties of waterborne interpenetrating polymer network based on epoxy-acrylic-oleic acid with butylated melamine formaldehyde[J]. Journal of Applied Polymer Science, 2009, 113 (2): 827- 838.
doi: 10.1002/app.v113:2
[1] 林方成, 程鹏明, 张鹏, 刘刚, 孙军. Al-Zn-Mg系铝合金的微合金化研究进展[J]. 材料工程, 2022, 50(8): 34-44.
[2] 张昊, 吴昊, 唐啸天, 罗涛, 邓人钦. 微量W元素的添加对CoCrFeNiMnAl高熵合金的组织与性能的影响[J]. 材料工程, 2022, 50(3): 50-59.
[3] 汪荣香, 洪立鑫, 章晓波. 生物医用镁合金耐腐蚀性能研究进展[J]. 材料工程, 2021, 49(12): 14-27.
[4] 胡洁, 董中奇, 沈英明, 王杨, 杨俊雅. Mo元素对LaFe11.5Si1.5磁制冷材料耐腐蚀性能及磁性能的影响[J]. 材料工程, 2020, 48(8): 119-125.
[5] 王瑶, 赵雪妮, 党新安, 杨璞, 魏森森, 张伟刚, 刘庆瑶. 钢表面梯度结构耐腐蚀铝涂层的制备及研究[J]. 材料工程, 2019, 47(11): 148-154.
[6] 王匀, 陈英箭, 许桢英, 唐书浩. 基体表面粗糙度对热丝TIG堆焊Inconel625组织和耐腐蚀性能的影响[J]. 材料工程, 2018, 46(7): 94-99.
[7] 许健, 竺培显, 韩朝辉, 曹勇, 周生刚. 表面处理对碳纤维基β-PbO2电极性能的影响[J]. 材料工程, 2018, 46(1): 125-132.
[8] 王询, 林建平, 万海浪. 铝合金表面特性对其胶接性能影响的研究进展[J]. 材料工程, 2017, 45(8): 123-131.
[9] 金杰, 韩岁伍, 安腾, 马君杰, 张伟. CrN和CrNiN涂层在模拟质子交换膜燃料电池环境中的电化学性能及疏水性能[J]. 材料工程, 2016, 44(10): 33-40.
[10] 杨可, 杨克, 包晔峰. 氮合金化堆焊硬面合金的耐腐蚀性能研究[J]. 材料工程, 2015, 43(5): 33-37.
[11] 于美, 马荣豹, 刘建华, 李松梅, 王一博, 刘英智. 硝酸铈封闭对2A12铝合金己二酸-硫酸阳极氧化膜耐蚀性的影响[J]. 材料工程, 2015, 43(1): 24-29.
[12] 曾维华, 刘洪喜, 王传琦, 张晓伟, 蒋业华. 工艺参数对不锈钢表面激光熔覆Ni基涂层组织及耐腐蚀性能的影响[J]. 材料工程, 2012, 0(8): 24-29.
[13] 吕家舜, 李锋, 杨洪刚, 康永林. 热浸镀锌铝镁钢板镀层组织及腐蚀性能研究[J]. 材料工程, 2012, 0(10): 89-93.
[14] 齐鑫哲, 魏琪, 栗卓新, 刘海霞. 电弧喷涂制备铝基涂层的组织与性能研究[J]. 材料工程, 2005, 0(1): 20-24,28.
[15] 孙广平, 李建忱, 赵明, 蒋青, 沈平. FeMnSiCrNi形状记忆合金研究[J]. 材料工程, 1997, 0(12): 18-21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn