Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (2): 84-89    DOI: 10.11868/j.issn.1001-4381.2016.001262
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
超声波振动对钛箔拉伸性能及位错分布的影响
蒋少松1, 杨天豪2, 孙宏宇3, 何玉石1, 卢振1, 王瑞卓1
1. 哈尔滨工业大学 金属精密热加工国防科技重点实验室, 哈尔滨 150001;
2. 上海航天设备制造总厂, 上海 200245;
3. 北京卫星制造厂有限公司, 北京 100094
Influence of ultrasonic vibration on tensile properties and dislocation distribution of titanium foil
JIANG Shao-song1, YANG Tian-hao2, SUN Hong-yu3, HE Yu-shi1, LU Zhen1, WANG Rui-zhuo1
1. National Key Laboratory for Precision Hot Processing of Metals, Harbin Institute of Technology, Harbin 150001, China;
2. Shanghai Aerospace Equipment Manufactory, Shanghai 200245, China;
3. Beijing Spacecrafts Manufacturing Co., Ltd., Beijing 100094, China
全文: PDF(5526 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 以研究超声波振动条件下钛箔的塑性变形特征和位错分布为目的,通过超声波辅助单向拉伸实验和微观组织分析研究不同超声波振动施加方式对钛箔塑性拉伸变形过程中的应力-应变、伸长率及位错分布的影响规律。结果表明:超声波振动过程中钛箔的流动应力最大降幅可以达到约80%,材料的伸长率从未施加超声时的40.33%最大增加至54.46%。通过TEM可以发现超声波振动条件下位错呈现平行分布的趋势且无大量缠结出现,而未施加超声拉伸的试样中位错的分布则显得杂乱无章且缠结严重。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蒋少松
杨天豪
孙宏宇
何玉石
卢振
王瑞卓
关键词 超声波振动钛箔应力-应变位错分布    
Abstract:The plastic deformation with respect to dislocation distribution of titanium foil under ultrasonic vibration was studied. The influencing rule of different ultrasonic vibration modes on the stress-strain,elongation and dislocation distribution of titanium foil during plastic deformation was studied by uniaxial tensile test and microstructure analysis. The results show that the flow stress of titanium foil can be reduced by about 80% and the elongation can increase from 40.33% to 54.46% during ultrasonic vibration. TEM shows that the dislocations tend to be parallel to each other without large amount of entanglement, and the distribution of dislocations in the samples without ultrasonic vibration is chaotic and seriously entangled.
Key wordsultrasonic vibration    titanium foil    stress-strain    dislocation distribution
收稿日期: 2016-10-26      出版日期: 2019-02-21
中图分类号:  TG301  
通讯作者: 蒋少松(1978-),男,博士,副教授,研究方向:先进材料塑性与超塑性成形及机理,联系地址:黑龙江省哈尔滨市南岗区西大直街92号哈尔滨工业大学10号楼607室(150001),E-mail:jiangshaosong@hit.edu.cn     E-mail: jiangshaosong@hit.edu.cn
引用本文:   
蒋少松, 杨天豪, 孙宏宇, 何玉石, 卢振, 王瑞卓. 超声波振动对钛箔拉伸性能及位错分布的影响[J]. 材料工程, 2019, 47(2): 84-89.
JIANG Shao-song, YANG Tian-hao, SUN Hong-yu, HE Yu-shi, LU Zhen, WANG Rui-zhuo. Influence of ultrasonic vibration on tensile properties and dislocation distribution of titanium foil. Journal of Materials Engineering, 2019, 47(2): 84-89.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.001262      或      http://jme.biam.ac.cn/CN/Y2019/V47/I2/84
[1] URAI T,KAMAI M,FUJⅡ H. Estimation of intrinsic contact angle of various liquids on PTFE by utilizing ultrasonic vibration[J]. Journal of Materials Engineering and Performance,2016,25(8):3384-3389.
[2] BAGHERZADEH S,ABRINIA K. Effect of ultrasonic vibration on compression behavior and microstructural characteristics of commercially pure aluminum[J]. Journal of Materials Engineering and Performance,2015,24(11):4364-4376.
[3] SIDDIQ A,SAYED T E. Acoustic softening in metals during ultrasonic assisted deformation via CP-FEM[J]. Materials Letters,2011, 65(2):356-359.
[4] SIDDIQ A,SAYED T E.A thermomechanical crystal plasticity constitutive model for ultrasonic consolidation[J]. Computational Materials Science,2012,51(1):241-251.
[5] JIMMA T,KASUGA Y,IWAKI N,et al. An application of ultrasonic vibration to the deep drawing process[J]. Journal of Materials Processing Technology,1998,80/81:406-412.
[6] MOUSAVI S A A A,FEIZI H,MADOLIAT R. Investigations on the effects of ultrasonic vibrations in the extrusion process[J]. Journal of Materials Processing Technology,2007,187/188:657-661.
[7] 仲崇凯. 高频振动铝合金塑性成形研究[D]. 济南:山东大学, 2015. ZHONG C K.Research of high-frequency vibration assisted aluminum alloy plastic forming[D]. Jinan:Shandong University,2015.
[8] 丁婕. 铝合金超声振动辅助弯曲成形研究[D]. 济南:山东大学, 2016. DING J.Research of ultrasonic vibration assisted aluminum alloy bending[D]. Jinan:Shandong University,2016.
[9] 王哲. 超声旋压材料流变规律及机理研究[D]. 长沙:中南大学, 2012. WANG Z. The rheological regularity and mechanism of ultrasonic spinning study[D]. Changsha:Central South University,2012.
[10] KAI X Z,TIAN K L,WANG C M,et al. Effects of ultrasonic vibration on the microstructure and tensile properties of the nano ZrB2/2024Al composites synthesized by direct melt reaction[J]. Journal of Alloys and Compounds,2016,668:121-127.
[11] XIE J Q,ZHOU T F,LIU Y,et al. Mechanism study on microgroove forming by ultrasonic vibration assisted hot pressing[J]. Precision Engineering,2016,46:270-277.
[12] 周正干,刘斯明.铝合金初期塑性变形与疲劳损伤的非线性超声无损评价方法[J]. 机械工程学报, 2011, 47(8):41-46. ZHOU Z G,LIU S M.Nondestructive evaluation of early stage plasticity and fatigue damage of aluminum alloy using nonlinear ultrasonic method[J].Journal of Mechanical Engineering,2011,47(8):41-46.
[13] 温彤,陈霞.超声振动对轻合金塑性压缩变形过程的影响[J]. 机械科学与技术, 2013, 32(2):221-224. WEN T,CHEN X.Effects of the ultrasonic vibration on the plastic deformation behavior in the compression process of light alloys[J].Mechanical Science and Technology for Aerospace Engineering,2013,32(2):221-224.
[14] 李伟,付宇明,陈革新,等. 超声波对比法测试金属塑性变形前后残余应力的变化[J]. 无损检测, 2008, 30(9):594-596. LI W,FU Y M,CHEN G X,et al.The experimental study on residual stress change by ultrasonic comparing testing of plastic deformation of metals[J]. Nondestructive Testing,2008,30(9):594-596.
[15] 李红,李灿,栗卓新. 功率超声在金属熔体成形中的作用效应及其可视化研究进展[J]. 材料工程, 2017, 45(5):118-126. LI H,LI C,LI Z X.Progress in power ultrasound effect on molten metal shaping and its visualization[J]. Journal of Materials Engineering,2017,45(5):118-126.
[1] 王波, 吴亚波, 郭洪宝, 贾普荣, 李俊. 2D-C/SiC复合材料偏轴拉伸力学行为研究[J]. 材料工程, 2017, 45(7): 91-96.
[2] 程明阳, 郝世明, 谢敬佩, 王爱琴, 马窦琴, 孙亚丽. SiCP/Al-Cu复合材料的高温热变形行为[J]. 材料工程, 2017, 45(2): 17-23.
[3] 郑吉良, 彭明军, 孙勇. 等腰梯形蜂窝芯玻璃钢夹芯板的面外压缩性能[J]. 材料工程, 2017, 45(2): 72-79.
[4] 张洋, 宋博瀚, 闫久春. 超声波振动下SiC陶瓷颗粒与Zn-Al液态合金的相互作用机制[J]. 材料工程, 2016, 44(2): 28-34.
[5] 郑宏伟, 唐荻, 武会宾, 杨柳, 刘丽华. 500MPa级针状铁素体钢的低周疲劳行为[J]. 材料工程, 2012, 0(12): 83-88.
[6] 汪洪峰, 左敦稳, 黄铭敏, 陈明和. 5050铝合金板材高温流变行为研究[J]. 材料工程, 2011, 0(1): 23-27.
[7] 许志武, 闫久春, 钟利, 杨士勤. 铝合金超声波钎焊过程中液态钎料的填缝及界面润湿行为[J]. 材料工程, 2010, 0(10): 1-4,8.
[8] 杨继年, 李子全. PP/POE/SGF三元复合泡沫体的压缩吸能特性研究[J]. 材料工程, 2009, 0(11): 55-58.
[9] 张于贤, 王红. 材料的一种新型单向应力应变本构模型[J]. 材料工程, 2007, 0(2): 7-10.
[10] 包晓军, 刘勇兵, 吴坪安, 孙喜良, 曹占义. 钢/锌层状复合材料的力学性能与耗能行为[J]. 材料工程, 2006, 0(8): 33-35,48.
[11] 高万夫. TiNi形状记忆合金丝在约束态热循环后的力学特性[J]. 材料工程, 2006, 0(2): 26-28,65.
[12] 张行安. 应力-应变曲线形状参数与材料硬化指数的关系[J]. 材料工程, 1997, 0(6): 17-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn