Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (6): 88-94    DOI: 10.11868/j.issn.1001-4381.2016.001264
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
海洋污损生物的附着对Q235碳钢表面阴极保护钙质沉积层形成的影响
李晓龙1,2, 张杰1, 张鑫1,2, 汪江伟1, 徐会会1,2, 段继周1, 侯保荣1
1. 中国科学院海洋研究所 海洋环境腐蚀与生物污损重点实验室, 山东 青岛 266071;
2. 中国科学院大学, 北京 100049
Effect of Marine Fouling Organisms Adhesion on Formation of Calcareous Deposits Formed by Cathodic Protection on Surface of Q235 Carbon Steel
LI Xiao-long1,2, ZHANG Jie1, ZHANG Xin1,2, WANG Jiang-wei1, XU Hui-hui1,2, DUAN Ji-zhou1, HOU Bao-rong1
1. Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of sciences, Qingdao 266071, Shandong, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China
全文: PDF(5215 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用全浸实验模拟实际海洋环境中污损生物的附着对阴极保护钙质沉积层形成的影响。采用扫描电子显微镜(SEM)、电子能谱(EDS)、电化学交流阻抗(EIS)、失重法以及荧光显微镜观察等方法分析腐蚀形貌、钙质沉积层成分、腐蚀动力学以及污损生物附着情况。结果表明:污损生物附着后所形成的钙质沉积层试样,电化学阻抗模值大于裸钢试样,但小于无污损生物附着所形成的钙质沉积层,这表明污损生物附着能够抑制钙质沉积层的形成,使形成的钙质沉积层保护性能下降。同一试样Ca/Mg比随着实验周期的增加逐渐减小,说明大型的污损生物对钙质沉积层形成的抑制作用更强。结合失重实验可知大型污损生物的附着会抑制局部腐蚀。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李晓龙
张杰
张鑫
汪江伟
徐会会
段继周
侯保荣
关键词 生物污损Q235碳钢阴极保护钙质沉积层腐蚀    
Abstract:The effect of fouling organisms adhesion on the formation of calcareous deposits in the ocean environment was simulated by immersion test. The corrosion morphologies, the calcareous deposits composition, the corrosion kinetics of Q235 steel and fouling organisms adhesion were investigated by the methods of SEM, EDS, EIS, mass loss method and fluorescence microscope observation. The results show that the electrochemical impedance modulus value and capacitive reactance arc of the samples of forming calcareous deposits after fouling organisms adhesion are greater than the bare steel samples, but it is less than the samples of forming calcareous deposits without fouling organisms adhesion. The results show that fouling organisms adhesion can inhibit the formation of calcareous deposits and cause calcareous deposits to protect metal performance degradation. The Ca/Mg ratio of same sample gradually decreases with the increase of experimental periods, and this shows that the ability of large fouling organisms to inhibit the formation of calcareous deposits is stronger.Mass loss experiments show that large fouling organisms can inhibit local corrosion.
Key wordsbiofouling    Q235 carbon steel    cathodic protection    calcareous deposit    corrosion
收稿日期: 2016-10-26      出版日期: 2018-06-14
中图分类号:  TG172.5  
通讯作者: 张杰(1976-),男,研究员,博士,研究方向为海洋腐蚀与防护,联系地址:山东省青岛市市南区南海路7号中国科学院海洋研究所(266071),E-mail:zhangjie@qdio.ac.cn     E-mail: zhangjie@qdio.ac.cn
引用本文:   
李晓龙, 张杰, 张鑫, 汪江伟, 徐会会, 段继周, 侯保荣. 海洋污损生物的附着对Q235碳钢表面阴极保护钙质沉积层形成的影响[J]. 材料工程, 2018, 46(6): 88-94.
LI Xiao-long, ZHANG Jie, ZHANG Xin, WANG Jiang-wei, XU Hui-hui, DUAN Ji-zhou, HOU Bao-rong. Effect of Marine Fouling Organisms Adhesion on Formation of Calcareous Deposits Formed by Cathodic Protection on Surface of Q235 Carbon Steel. Journal of Materials Engineering, 2018, 46(6): 88-94.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.001264      或      http://jme.biam.ac.cn/CN/Y2018/V46/I6/88
[1] 侯保荣, 海洋环境腐蚀规律及控制技术[J]. 科学与管理, 2005, 24(5):7-8. HOU B R. The law and control of corrosion in marine environment[J].Science and Management, 2005, 24(5):7-8.
[2] 李松梅, 王彦卿, 刘建华, 等. 枝孢霉菌对A3钢腐蚀的影响[J]. 材料工程, 2008(7):55-58. LI S H, WANG Y Q, LIU J H, et al. Influence of cladosporium on corrosion behavior of steel A3[J]. Journal of Materials Engineering, 2008(7):55-58.
[3] CHAMBERS L D, STOKES K R, WALSH F C, et al. Modern approaches to marine antifouling coatings[J]. Surface and Coatings Technology, 2006, 201(6):3642-3652.
[4] VEDAPRAKASH L, DINESHRAM R, RATNAM K, et al. Experimental studies on the effect of different metallic substrates on marine biofouling[J]. Colloids and Surfaces B:Biointerfaces, 2013, 106(3):1-10.
[5] 张杰, 刘奉令, 李伟华, 等. 硫酸盐还原菌对海底泥中Al-Zn-In-Mg-Ti阳极的腐蚀影响[J]. 材料工程, 2011(4):43-48. ZHANG J, LIU F L, LI W H, et al. Effect of sulphate reducing bacteria on corrosion of Al-Zn-In-Mg-Ti anode in marine sediment[J].Journal of Materials Engineering,2011(4):43-48.
[6] 温国谋, 郑辅养. 海水中阴极保护时钙质沉积层的形成及其应用[J]. 腐蚀与防护, 1995, 16(1):50-53. WEN G M, ZHENG F Y. Formation and application of calcareous deposits formed by cathodic protection in sea water[J]. Corrosion and Protection, 1995, 16(1):50-53.
[7] WORMSEN A, AVICE M, FJELDSTAD A, et al. Base material fatigue data for low alloy forged steels used in the subsea industry. part 1:in air S-N data[J]. International Journal of Fatigue, 2015, 80:477-495.
[8] 宋积文, 兰志刚, 王在峰, 等. 海洋环境中阴极保护设计与阴极产物膜[J]. 腐蚀与防护, 2010, 31(4):265-267. SONG J W, LAN Z G, WANG Z F, et al. Cathodic protection design and cathodic protection films in seawater[J]. Corrosion and Protection, 2010, 31(4):265-267.
[9] LEE R U, AMBROSE J R. Influence of cathodic protection parameters on calcareous deposit formation[J]. Corrosion, 1988, 44(12):887-891.
[10] 郑辅养, 温国谋, 方炳福, 等. 阴极极化模式对钙质沉积层形成的影响[J]. 腐蚀与防护, 1995, 16(6):253-256. ZHENG F Y, WEN G M, FANG B F, et al.Effect of cathodic polarization mode on formation of calcareous deposits[J]. Corrosion and Protection, 1995, 16(6):253-256.
[11] DESLOUIS C, FESTY D, GIL O, et al. Characterization of calcareous deposits in artificial sea water by impedances techniques:2-deposit of Mg(OH)2 without CaCO3[J]. Electrochimica Acta, 2000, 45(11):1837-1845.
[12] 王旭, 肖葵, 程学群,等. Q235钢的污染海洋大气环境腐蚀寿命预测模型[J]. 材料工程, 2017, 45(4):51-57. WANG X, XIAO K, CHENG X Q, et al. Corrosion prediction model of Q235 steel in polluted marine atmospheric environment[J]. Journal of Materials Engineering,2017, 45(4):51-57.
[13] 汪江伟, 张杰, 陈守刚, 等. 钙质层对Q235碳钢在含双眉藻f/2培养基中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2015, 35(6):535-542. WANG J W, ZHANG J, CHEN S G,et al. Influence of calcareous deposit on corrosion behavior of Q235 carbon steel in f/2 culture medium with amphora[J].Journal of Chinese Society for Corrosion and Protection, 2015, 35(6):535-542.
[14] DESLOUIS C, FALARAS P, GIL O, et al. Influence of clay on calcareous deposit in natural and artificial sea water[J]. Electrochimica Acta, 2006, 51(15):3173-3180.
[15] EDYVEAN R G J, MAINES A D, HUTCHINSON C J, et al. Interactions between cathodic protection and bacterial settlement on steel in seawater[J]. International Biodeterioration & Biodegradation, 1992, 29(3-4):251-271.
[16] LÓPEZMORENO A, SEPÚLVEDASÁNCHEZ J D, MERCEDES E M, et al. Calcium carbonate precipitation by heterotrophic bacteria isolated from biofilms formed on deteriorated ignimbrite stones:influence of calcium on EPS production and biofilm formation by these isolates[J]. Biofouling, 2014, 30(5):547-560.
[17] CACHET H, EL MOUSTAFID T, HERBERT D, et al. Characterization of deposits by direct observation and by electrochemical methods on a conductive transparent electrode. Application to biofilm and scale deposit under cathodic protection[J]. Electrochimica Acta, 2001, 46(24):3851-3857.
[18] D'ONOFRIO A, CRAWFORD J M, STEWART E J, et al. Siderophores from neighboring organisms promote the growth of uncultured bacteria[J]. Chemistry & Biology, 2010, 17(3):254-264.
[19] EASHWAR M, SUBRAMANIAN G, CHANDRASEKARAN P, et al. The interrelation of cathodic protection and marine macrofouling[J]. Biofouling, 1995, 8(4):303-312.
[20] 马士德, 孙虎元, 黄桂桥. 海洋污损生物对碳钢腐蚀的影响规律[J]. 中国腐蚀与防护学报, 2009, 20(3):177-182. MA S D, SUN H Y, HUANG G Q. Effect of marine fouling creatures on corrosion of carbon steel[J].Journal of Chinese Society for Corrosion and Protection, 2009, 20(3):177-182.
[1] 袁晓静, 查柏林, 陈小虎, 禹志航, 王新军. WC-10Co-4Cr涂层在不同温度酸与NaCl溶液中的耐腐蚀性能[J]. 材料工程, 2019, 47(5): 63-71.
[2] 王玉洁, 张鹏, 王选, 杜云慧, 王胜林, 张伟一, 鹿红梅. 氧气流量对LY12铝合金微弧氧化膜致密性的影响[J]. 材料工程, 2019, 47(5): 86-92.
[3] 常海, 郭雪刚, 文磊, 金莹. SiC纳米颗粒对TC4钛合金微弧氧化涂层组织结构及耐蚀性能的影响[J]. 材料工程, 2019, 47(3): 109-115.
[4] 王赟, 胡军, 王甜甜, 郑茂盛. 曼尼希碱/钨酸钠复配对N80钢缓蚀的协同作用[J]. 材料工程, 2019, 47(2): 122-128.
[5] 陈跃良, 王安东, 卞贵学, 张勇. CF8611/AC531复合材料性能及与7B04铝合金电偶腐蚀的电化学研究[J]. 材料工程, 2019, 47(1): 97-105.
[6] 马慧媛, 刘慧丛, 石文静, 施丽铭, 李卫平, 朱立群. 应力载荷作用下5A06铝合金薄板材料在盐水中腐蚀行为[J]. 材料工程, 2018, 46(9): 152-159.
[7] 万闪, 姜丹, 蔡光义, 廖圣智, 董泽华. 铝合金超疏水转化膜的制备与性能[J]. 材料工程, 2018, 46(9): 144-151.
[8] 张莹, 高博, 王磊, 宋秀. 一种新型钴基高温合金在900℃熔融NaCl中的热腐蚀行为[J]. 材料工程, 2018, 46(8): 134-139.
[9] 邓仲华, 刘其斌, 徐鹏, 姚志浩. 方形光斑激光冲击强化金属表面的耐腐蚀性能及机理[J]. 材料工程, 2018, 46(8): 140-147.
[10] 王匀, 陈英箭, 许桢英, 唐书浩. 基体表面粗糙度对热丝TIG堆焊Inconel625组织和耐腐蚀性能的影响[J]. 材料工程, 2018, 46(7): 94-99.
[11] 李晶, 赵世才, 杜锋, 范凤玉, 潘理达, 于化东. 激光构筑槽棱与网格状结构超疏水耐腐蚀表面研究[J]. 材料工程, 2018, 46(5): 86-91.
[12] 罗晓民, 魏梦媛, 曹敏. 耐腐蚀超疏水铜网的制备及其在油水分离中的应用[J]. 材料工程, 2018, 46(5): 92-98.
[13] 杜娟, 田辉, 陈亚军, 王付胜, 陈翘楚, 褚弘. 7A04铝合金应力腐蚀敏感性及裂纹萌生与扩展行为[J]. 材料工程, 2018, 46(4): 74-81.
[14] 龙伟漾, 吴玉萍, 高文文, 洪晟. Zn-Al-Mg-RE涂层在含SRB海水中的耐腐蚀性与机理[J]. 材料工程, 2018, 46(3): 91-97.
[15] 吴伟, 郝文魁, 李晓刚, 钟平, 董超芳, 刘智勇, 肖葵. 高Cl-环境对M152和17-4PH高强钢应力腐蚀开裂行为的影响[J]. 材料工程, 2018, 46(2): 105-114.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn