Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (4): 38-42    DOI: 10.11868/j.issn.1001-4381.2016.001300
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
合成条件对纳米锌铁氧体形貌与性能的影响
赵晖, 马瑞廷, 赵海涛
沈阳理工大学 材料科学与工程学院, 沈阳 110159
Effect of Synthesis Conditions on the Morphology and Properties of Nano Zn Ferrites
ZHAO Hui, MA Rui-ting, ZHAO Hai-tao
School of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159, China
全文: PDF(2832 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用多元醇法制备ZnFe2O4纳米颗粒,研究回流时间、升温速率和回流温度对产物尺寸、形貌和磁性能的影响。通过X射线衍射仪(XRD),透射电子显微镜(TEM),傅里叶红外光谱和振动样品磁强计对样品的结构、形貌和磁性能进行表征。结果表明:制备的ZnFe2O4纳米颗粒分散性较好,尺寸较均一。随着回流时间的延长和回流温度的升高,ZnFe2O4颗粒粒径增大。回流温度为270℃时,制备的ZnFe2O4饱和磁化强度为35.09A·m2/kg,剩磁较小,矫顽力为4.2kA/m,表现出亚铁磁性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵晖
马瑞廷
赵海涛
关键词 锌铁氧体纳米颗粒多元醇法磁性能    
Abstract:ZnFe2O4 nanoparticles were synthesized by polyol process. The influence of reaction conditions, such as the refluxing time, heating rates and refluxing temperature on the size, morphology and magnetic properties was investigated. The structure, morphology and magnetic properties of resultant products were characterized by X-ray diffraction(XRD), transmission electron microscopy(TEM), fourier transform infrared (FTIR) and vector network analyzer. The results show that the obtained ZnFe2O4 nanoparticles have uniform size and good dispersibility. The particle size increases with the increase of the reflux time and the reflux temperature. ZnFe2O4 nano ferrites synthesized at the refluxing temperature of 270℃ have maximum saturation magnetization of 35.09A·m2/kg with less remanence and the coercive force is 4.2kA/m.ZnFe2O4 nanoferrites show a typical ferrimagnetic behavior.
Key wordsZn ferrites    nanoparticle    polyol process    magnetic property
收稿日期: 2016-10-30      出版日期: 2018-04-14
中图分类号:  TB332  
  TM25  
通讯作者: 赵海涛(1976-),女,博士,教授,现从事功能材料研究,联系地址:辽宁省沈阳市浑南新区南屏中路6号沈阳理工大学材料科学与工程学院(110159),E-mail:zht95711@163.com     E-mail: zht95711@163.com
引用本文:   
赵晖, 马瑞廷, 赵海涛. 合成条件对纳米锌铁氧体形貌与性能的影响[J]. 材料工程, 2018, 46(4): 38-42.
ZHAO Hui, MA Rui-ting, ZHAO Hai-tao. Effect of Synthesis Conditions on the Morphology and Properties of Nano Zn Ferrites. Journal of Materials Engineering, 2018, 46(4): 38-42.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.001300      或      http://jme.biam.ac.cn/CN/Y2018/V46/I4/38
[1] HE J Z,WANG X X,ZHANG Y L,et al. Small magnetic nanoparticles decorating reduced graphene oxides to tune the electromagnetic attenuation capacity[J]. Journal of Materials Chemistry C,2016,4(29):7130-7140.
[2] HUANG X G,ZHANG J,LAI M,et al. Preparation and microwave absorption mechanisms of the NiZn ferrite nanofibers[J]. Journal of Alloys and Compounds,2015,627(1):367-373.
[3] BHATTACHARYA P,HATUI G,MANDAL A,et al. Investigation of microwave absorption property of the core-shell structured Li0.4Mg0.6Fe2O4/TiO2 nanocomposite in X-band region[J]. Journal of Alloys and Compounds,2014,590(4):331-340.
[4] 焦清介,任慧,付小芬,等. 溶胶-凝胶法制备纳米ZnFe2O4复合材料及宽频吸波性能研究[J]. 稀有金属材料与工程,2009,38(2):963-966. JIAO Q J,REN H,FU X F,et al. Preparation of ZnFe2O4 by sol-gel and its broad-band absorbent properties[J]. Rare Metal Materials and Engineering,2009,38(2):963-966.
[5] ZHANG Q,ZHU M F,ZHANG Q H,et al. Fabrication and magnetic property analysis of monodisperse manganese-zinc ferrite nanospheres[J]. Journal of Magnetism and Magnetic Materials,2009,321(19):3203-3206.
[6] ZHU A Y,JIANG F Y,CHEN A K X,et al. Size-controlled synthesis of monodisperse superparamagnetic iron oxide nanoparticles[J]. Journal of Alloys and Compounds,2011,509(34):8549-8553.
[7] WANG W W. Microwave-induced polyol-process synthesis of MFe2O4(M=Mn, Co) nanoparticles and magnetic property[J]. Materials Chemistry and Physics,2008,108(2):227-231.
[8] MOHAMED A,RAO B P,KIM C G. Shape and size-controlled synthesis of Ni Zn ferrite nanoparticles by two different routes[J]. Materials Chemistry and Physics,2014,147(3):443-451.
[9] KISHIMOTO M,ISAKA D,HORIUCHI A,et al. Magnetic properties in oriented platelet Fe3O4 particles prepared by the polyol method using α-FeOOH as precursors[J]. Journal of Magnetism and Magnetic Materials,2014,352:13-16.
[10] KAZAN S,TANRIWERDI E E,TOPKAYA R,et al. Magnetic properties of triethylene glycol coated CoFe2O4 and Mn0.2Co0.8Fe2O4 NP's synthesized by polyol method[J]. Arabian Journal of Chemistry,2012,15:650-657.
[11] TOPKAYA R,BAYKAL A,DEMIR A. Yafet-Kittel-type magnetic order in Zn-substituted cobalt ferrite nanoparticles with uniaxial anisotropy[J]. J Nanopart Research,2013,15(1):1359-1376.
[12] ALTINCEKICA T G,BOZ ī, BAYKAL A,et al. Synthesis and characterization of CuFe2O4 nanorods synthesized by polyol route[J]. Journal of Alloys and Compounds,2010,493(1):493-498.
[13] SIVAKUMAR M,KANAGESAN S,CHINNARAJ K,et al. Synthesis, characterization and effects of citric acid and PVA on magnetic properties of CoFe2O4[J]. Journal of Inorganic and Organometallic Polymers,2013,23(2):439-445.
[14] SZCZYGIEL I,WINIARSKA K. Synthesis and characterization of manganese-zinc ferrite obtained by thermal decomposition from organic precursors[J]. Journal of Thermal Analysis and Calorimetry,2014,115(1):471-477.
[15] 陈世杰,代建清,刘浩飞. 反应时间对Ba2Co0.4Zn1.0Fe12O22(Co2Y)铁氧体性能的影响[J]. 功能材料,2015,46(4):4076-4080. CHEN S J,DAI J Q,LIU H F. Effect of reaction time on the properties of Ba2Co0.4Zn1.0Fe12O22(Co2Y) ferrite[J]. Functional Materials,2015,46(4):4076-4080.
[16] FAN H,LEVE E W,SCULLIN C. Forming biocompatible and nonaggregated nanocrystals in water[J]. Nano Letter,2005,5(4):645-648.
[17] 陈瑾. 高温多元醇法制备超顺磁CoFe2O4纳米颗粒磁共振造影剂[J]. 无机材料学报,2009,24(5):967-972. CHEN J. High temperature polyol synthesis of superparamagnetic CoFe2O4 nanoparticles for magnetic resonance imaging contrast agents[J]. Journal of Inorganic Materials,2009,24(5):967-972.
[18] WU H Q,ZHANG N,MAO L,et al. Controlled synthesis and magnetic properties of monodisperse Ni1-xZn<em>xFe2O4/MWCNT nanocomposites via microwave-assisted polyol process[J]. Journal of Alloys and Compounds,2013,554(3):132-137.
[19] 赵海涛,张强,刘瑞萍,等. 单分散纳米锌铁氧体的制备及其磁性能[J]. 材料工程,2016,44(1):103-107. ZHAO H T,ZHANG Q,LIU R P,et al. Synthesis and magnetic properties of monodisperse ZnFe2O4 nanoparticles[J]. Journal of Materials Engineering,2016,44(1):103-107.
[1] 常海, 郭雪刚, 文磊, 金莹. SiC纳米颗粒对TC4钛合金微弧氧化涂层组织结构及耐蚀性能的影响[J]. 材料工程, 2019, 47(3): 109-115.
[2] 闫智然, 艾轶博, 王祎旋, 王煜, 何峻, 王海成. FeCo/PPy纳米复合材料的合成及其电磁性能调控[J]. 材料工程, 2019, 47(3): 63-70.
[3] 秦振海, 黄昊, 吴爱民, 陈明珠, 杨影影, 姚曼. 立方相碳化钛在锂空电池中的电化学行为[J]. 材料工程, 2019, 47(2): 34-41.
[4] 王晨, 王魁, 肖小波, 丁浩, 汪炳叔, 毛朝武, 张维林, 金钢南. 钨酸钠对取向硅钢绝缘涂层性能的影响[J]. 材料工程, 2018, 46(4): 51-57.
[5] 赵海涛, 马瑞廷, 刘瑞萍. 热分解法制备Ni0.5Zn0.5Fe2O4纳米颗粒[J]. 材料工程, 2017, 45(9): 81-85.
[6] 李悦, 朱立群, 李卫平, 刘慧丛, 南海洋. 钕铁硼器件表面电沉积铜层及性能[J]. 材料工程, 2017, 45(6): 55-60.
[7] 梁瑞洋, 杨平, 毛卫民. 冷轧压下率及初始高斯晶粒取向度对超薄取向硅钢织构演变与磁性能的影响[J]. 材料工程, 2017, 45(6): 87-96.
[8] 谢春晓, 钟守炎, 杨元政, 罗剑英, 廖梓龙. 热处理对(Fe0.52Co0.30Ni0.18)73Cr17Zr10非晶合金的组织结构及磁性能的影响[J]. 材料工程, 2016, 44(8): 46-50.
[9] 钟喜春, 胡庚, 郭兴家, 刘仲武. 流动温压成型黏结钕铁硼/锶铁氧体复合磁体的研究[J]. 材料工程, 2016, 44(4): 9-13.
[10] 赵海涛, 王俏, 刘瑞萍, 马瑞廷. 锰锌铁氧体的低温合成及表征[J]. 材料工程, 2016, 44(11): 73-77.
[11] 赵海涛, 张强, 刘瑞萍, 丁学勇, 马瑞廷. 单分散纳米锌铁氧体的制备及其磁性能[J]. 材料工程, 2016, 44(1): 103-107.
[12] 王新星, 张宝林, 王行展, 冯凌云. 雾化热分解-氧化五羰基铁制备磁性氧化铁纳米粒子[J]. 材料工程, 2014, 0(8): 51-54.
[13] 刘渊, 刘祥萱, 王煊军. 铁氧体基核壳结构复合吸波材料研究进展[J]. 材料工程, 2014, 0(7): 98-106.
[14] 刘繁茂, 张慧燕, 张涛. Fe-Nd-B-Zr块体非晶合金的形成能力和磁性能[J]. 材料工程, 2014, 0(10): 6-10.
[15] 丰荣娟, 李敏, 刘家祥. 化学还原法制备小粒径金纳米粒子[J]. 材料工程, 2013, 0(5): 28-32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn