Please wait a minute...
 
2222材料工程  2017, Vol. 45 Issue (8): 55-61    DOI: 10.11868/j.issn.1001-4381.2016.001308
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
热塑性树脂含量对CCF800H碳纤维环氧复合材料Ⅰ型层间断裂韧度的影响
钟翔屿1,2,*(), 张代军1,2, 包建文1,2, 李伟东1,2
1 北京航空材料研究院 先进复合材料国防科技重点实验室, 北京 100095
2 中航复合材料有限责任公司 复合材料中心, 北京 101300
Influence of Content of Toughening Thermoplastic on Mode-Ⅰ Interlaminar Fracture Toughness of Epoxy Composite Reinforced by CCF800H Carbon Fiber
Xiang-yu ZHONG1,2,*(), Dai-jun ZHANG1,2, Jian-wen BAO1,2, Wei-dong LI1,2
1 National Key Laboratory of Advanced Composites, Beijing Institute of Aeronautical Materials, Beijing 100095, China
2 Composite Center, AVIC Composite Corporation Ltd., Beijing 101300, China
全文: PDF(5308 KB)   HTML ( 47 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用国产CCF800H高强中模碳纤维增强环氧制备了复合材料,研究不同热塑性树脂含量对复合材料张开(Ⅰ)型层间断裂韧度的影响,研究表明:随着热塑组分含量的提高,复合材料的裂纹起始应变能量释放率(GⅠC-init)与裂纹稳态扩展应变能量释放率(GⅠC-prop)都获得了大幅度提升,在增韧组分质量分数大于20%时,增韧聚芳醚酰亚胺粉体可在复合材料层间富集形成层间高韧区,并在复合材料层间形成了由"连续相"和"分散相"组成的层间增韧结构。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
钟翔屿
张代军
包建文
李伟东
关键词 碳纤维热塑性树脂环氧Ⅰ型层间断裂韧度    
Abstract

The toughened composite was prepared by the domestic high strength medium modulus carbon fiber (CCF800H) reinforced epoxy resin matrix. The influence of different content of toughening thermoplastic within epoxies on the mode-Ⅰ interlaminar fracture toughness (GⅠC) of composites was investigated. The results show the initial strain energy release rate (GⅠC-init) and the propagational strain energy release rate (GⅠC-prop) of composites improve remarkably with the increasing of content of toughening thermoplastics within epoxy matrix. In the case of mass fraction of thermoplastic is greater than 20% of epoxy, the toughening aromatic polyetherimide particle can be concentrated on the interlayer of composite to form the high interlaminar toughness zone. The interlaminar toughened structure constituted by 'continuous phase' and 'dispersion phase' is fabricated on the interlayer of composite.

Key wordscarbon fiber    thermoplastic    epoxy    mode-Ⅰinterlaminar fracture toughness
收稿日期: 2016-11-01      出版日期: 2017-08-10
中图分类号:  TQ323.5  
通讯作者: 钟翔屿     E-mail: xyzhong2003@sohu.com
作者简介: 钟翔屿(1976-), 男, 高级工程师, 主要从事高性能树脂及其先进复合材料研究, 联系地址:北京市81信箱3分箱(100095), E-mail:xyzhong2003@sohu.com
引用本文:   
钟翔屿, 张代军, 包建文, 李伟东. 热塑性树脂含量对CCF800H碳纤维环氧复合材料Ⅰ型层间断裂韧度的影响[J]. 材料工程, 2017, 45(8): 55-61.
Xiang-yu ZHONG, Dai-jun ZHANG, Jian-wen BAO, Wei-dong LI. Influence of Content of Toughening Thermoplastic on Mode-Ⅰ Interlaminar Fracture Toughness of Epoxy Composite Reinforced by CCF800H Carbon Fiber. Journal of Materials Engineering, 2017, 45(8): 55-61.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.001308      或      http://jme.biam.ac.cn/CN/Y2017/V45/I8/55
Sample S-500M DDS PEI-C (solved) PEI-C (mixed)
PIC-5 100 56 8.21 0
PIC-10 100 56 8.21 9.12
PIC-15 100 56 8.21 19.32
PIC-20 100 56 8.21 30.79
PIC-25 100 56 8.21 43.79
PIC-30 100 56 8.21 58.65
Table 1  树脂配制比例表
Fig.1  PEI-C在S-500M的溶解性实验
(a)初始状态; (b)60℃; (c)80℃; (d)100℃; (e)120℃
Fig.2  PIC/CCF800H碳纤维复合材料GⅠC载荷-位移曲线
Fig.3  PIC/CCF800H碳纤维复合材料GⅠC与裂纹长度关系曲线
Fig.4  PIC/CCF800H碳纤维复合材料Ⅰ型层间断裂韧度
Fig.5  PIC/CCF800H系列复合材料GⅠC试样断口形貌
(a)PIC-5;(b)PIC-10;(c)PIC-15;(d)PIC-20;(e)PIC-25;(f)PIC-30;(1) 低倍; (2) 高倍
Fig.6  GⅠC试样韧性结构形貌
(a)PIC-20;(b)PIC-25;(c)PIC-30;(1) 未刻蚀;(2) 刻蚀
Fig.7  PEI-C与S500M固化物的分相结构
1 陈祥宝. 先进树脂基复合材料的发展[J]. 航空材料学报, 2000, 20 (1): 46- 54.
1 CHEN X B . Development of advanced polymer composites[J]. Journal of Aeronautical Materials, 2000, 20 (1): 46- 54.
2 ENDO M . Composites for aircraft and aerospace application[J]. SEN-Ⅰ GAKKAISHI, 2014, 70 (9): 508- 511.
doi: 10.2115/fiber.70.P-508
3 景鹏展, 朱姝, 余木火, 等. 基于碳纤维表面修饰制备碳纤维织物增强聚苯硫醚(CFF/PPS)热塑性复合材料[J]. 材料工程, 2016, 44 (3): 21- 27.
doi: 10.11868/j.issn.1001-4381.2016.03.004
3 JING P Z , ZHU S , YU M H , et al. Preparation of carbon fiber fabric reinforced polyphenylene sulfide (CFF/PPS) thermoplastic composites based on surface modification of carbon fibers[J]. Journal of Materials Engineering, 2016, 44 (3): 21- 27.
doi: 10.11868/j.issn.1001-4381.2016.03.004
4 陈祥宝, 张宝艳, 邢丽英. 先进树脂基复合材料技术发展及应用现状[J]. 中国材料进展, 2009, 28 (6): 2- 12.
4 CHEN X B , ZHANG B Y , XING L Y . Application and development of advanced polymer matrix composites[J]. Materials China, 2009, 28 (6): 2- 12.
5 赵稼祥. 民用航空和先进复合材料[J]. 高科技纤维与应用, 2007, 32 (2): 6- 10.
5 ZHAO J X . Civil aviation and advanced composite materials[J]. Hi-Tech Fiber & Application, 2007, 32 (2): 6- 10.
6 杜善义. 先进复合材料和航空航天[J]. 复合材料学报, 2008, 22 (1): 1- 7.
6 DU S Y . Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica, 2008, 22 (1): 1- 7.
7 陈绍杰. 复合材料技术与大型飞机[J]. 航空学报, 2008, 29 (3): 605- 610.
7 CHEN S J . Composite technology and large aircraft[J]. Acta Aeronautica et Astronautic Sinica, 2008, 29 (3): 605- 610.
8 刘代军, 陈亚莉. 先进树脂基复合材料在航空工业中的应用[J]. 材料工程, 2008, (增刊1): 194- 198.
8 LIU D J , CHEN Y L . Application of advanced polymer matrix composites in aviation industry[J]. Journal of Materials Engineering, 2008, (Suppl 1): 194- 198.
9 沈真, 杨胜春. 飞机结构用复合材料的力学性能要求[J]. 材料工程, 2007, (增刊1): 248- 252.
9 SHEN Z , YANG S C . Property requirements of composite systems applicable to aircraft structures[J]. Journal of Materials Engineering, 2007, (Suppl 1): 248- 252.
10 LOBANOV M V , GULYAEV A I , BABIN A N . Improvement of the impact and crack resistance of epoxy thermosets and thermoset-based composites with the use of thermoplastics as modifiers[J]. Polymer Science Series B, 2016, 58 (1): 1- 12.
doi: 10.1134/S1560090416010048
11 STEPHAN S . Fiber-reinforced composites based on epoxy resins modified with elastomers and surface-modified silica nanoparticles[J]. Journal of Materials Science, 2014, 49 (6): 2391- 2402.
doi: 10.1007/s10853-013-7963-8
12 GAN W J , ZHAN G Z , WANG M H . Rheological behaviors and structural transitions in a polyethersulfone-modified epoxy system during phase separation[J]. Colloid and Polymer Science, 2007, 285 (15): 1727- 1731.
doi: 10.1007/s00396-007-1758-x
13 HWANG J H , LEE C S , HWANG W . Effect of crack propagation directions on the interlaminar fracture toughness of carbon/epoxy composite materials[J]. Applied Composite Materials, 2001, 8 (6): 411- 433.
doi: 10.1023/A:1012663722334
14 王瑞, 郭兴峰, 王广峰. 织物增强复合材料层合板Ⅰ型层间断裂特性[J]. 复合材料学报, 2004, 21 (1): 68- 72.
14 WANG R , GUO X F , WANG G F . Study on the mode Ⅰ interlaminar fracture toughness of fabrix reinforced laminates[J]. Acta Materiae Compositae Sinica, 2004, 21 (1): 68- 72.
15 DOMENICO B , FABRIZIO G , PAOLO L . Interaction between interlaminar and intralaminar damage in fiber-reinforced composite laminates[J]. International Journal for Computational Methods in Engineering Science and Mechanics, 2008, 37 (9): 358- 373.
16 DOMENICO B , FABRIZIO G , PAOLO L . Dynamic mode Ⅰ and mode Ⅱ crack propagation in fiber reinforced composites[J]. Mechanics of Advanced Materials and Structures, 2009, 38 (16): 442- 455.
17 BONHOMME J , VINA J , ARGUELLES A , et al. Influence of the matrix toughness in carbon-epoxy composites subjected to delamination under modes Ⅰ, Ⅱ, and mixed Ⅰ/Ⅱ[J]. Mechanics of Advanced Materials and Structures, 2013, 20, 679- 686.
doi: 10.1080/15376494.2012.667866
18 FERET V , HOSSEIN G , HUBERT P . Effect of fibre volume fraction on mixed-mode fracture of a fabric carbon/epoxy composite[J]. Applied Composite Materials, 2013, 20 (4): 415- 429.
doi: 10.1007/s10443-012-9276-5
[1] 孔国强, 安振河, 魏化震, 李莹, 邵蒙, 于秋兵, 纪校君, 李居影, 王康. 碳纤维丝束结构对碳纤维/酚醛复合材料烧蚀性能的影响[J]. 材料工程, 2022, 50(9): 113-119.
[2] 邢宇, 张代军, 王成博, 倪洪江, 李军, 陈祥宝. PEEK复合材料用碳纤维上浆剂研究进展[J]. 材料工程, 2022, 50(8): 70-81.
[3] 夏先朝, 冯学磊, 孙京丽, 聂敬敬, 庞松, 袁勇, 董泽华. 镁合金超疏水环氧复合涂层的制备与性能[J]. 材料工程, 2022, 50(8): 124-132.
[4] 程子敬, 王凯峰, 张连洪. 基于微观尺度X射线断层扫描技术的短切碳纤维SMC复合材料失效分析[J]. 材料工程, 2022, 50(5): 130-138.
[5] 贾耀雄, 许良, 敖清阳, 张文正, 王涛, 魏娟. 不同热氧环境对T800碳纤维/环氧树脂复合材料力学性能的影响[J]. 材料工程, 2022, 50(4): 156-161.
[6] 阚侃, 王珏, 付东, 郑明明, 张晓臣. 氮掺杂碳纤维包覆石墨烯纳米片的构建及电容特性[J]. 材料工程, 2022, 50(2): 94-102.
[7] 金启豪, 陈娟, 彭立明, 李子言, 阎熙, 李春曦, 侯城成, 袁铭扬. 碳纤维增强树脂基复合材料与铝/镁合金连接研究进展[J]. 材料工程, 2022, 50(1): 15-24.
[8] 王牧, 曾夏茂, 苗霞, 魏浩光, 周仕明, 冯岸超. 三维石墨烯-吡咯气凝胶/环氧树脂复合材料的制备及其性能[J]. 材料工程, 2022, 50(1): 117-124.
[9] 焦春荣, 焦健. 料浆对熔渗工艺制备碳纤维织物增强碳化硅复合材料的影响[J]. 材料工程, 2021, 49(7): 78-84.
[10] 张代军, 陈俊, 包建文, 钟翔屿, 陈祥宝. 树脂基体中热塑性树脂含量对碳纤维环氧复合材料Ⅱ型层间断裂韧性的影响[J]. 材料工程, 2021, 49(6): 178-184.
[11] 陈宇, 张代军, 李军, 温嘉轩, 陈祥宝. 三维结构石墨烯气凝胶/环氧树脂复合材料的制备和电磁屏蔽性能[J]. 材料工程, 2021, 49(5): 82-88.
[12] 刘旭, 徐海, 徐立新, 张宏, 周琼. 改性碳纤维增强尼龙6复合材料的制备及性能[J]. 材料工程, 2021, 49(4): 128-134.
[13] 顾善群, 张代军, 付善龙, 刘燕峰, 李军, 邹齐, 陈祥宝. 碳纤维/双马树脂复合材料抗高速冲击性能[J]. 材料工程, 2021, 49(11): 73-82.
[14] 周松, 贾耀雄, 许良, 边钰博, 涂宜鸣. 湿热环境对T800碳纤维/环氧树脂基复合材料力学性能的影响[J]. 材料工程, 2021, 49(10): 138-143.
[15] 王钰登, 郑亚萍, 宋珊, 姚东东. SiO2无溶剂纳米流体粒径和含量对环氧树脂力学和热性能的影响[J]. 材料工程, 2021, 49(10): 156-163.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn