Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (8): 55-61    DOI: 10.11868/j.issn.1001-4381.2016.001308
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
热塑性树脂含量对CCF800H碳纤维环氧复合材料Ⅰ型层间断裂韧度的影响
钟翔屿1,2, 张代军1,2, 包建文1,2, 李伟东1,2
1. 北京航空材料研究院 先进复合材料国防科技重点实验室, 北京 100095;
2. 中航复合材料有限责任公司 复合材料中心, 北京 101300
Influence of Content of Toughening Thermoplastic on Mode-Ⅰ Interlaminar Fracture Toughness of Epoxy Composite Reinforced by CCF800H Carbon Fiber
ZHONG Xiang-yu1,2, ZHANG Dai-jun1,2, BAO Jian-wen1,2, LI Wei-dong1,2
1. National Key Laboratory of Advanced Composites, Beijing Institute of Aeronautical Materials, Beijing 100095, China;
2. Composite Center, AVIC Composite Corporation Ltd., Beijing 101300, China
全文: PDF(5308 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用国产CCF800H高强中模碳纤维增强环氧制备了复合材料,研究不同热塑性树脂含量对复合材料张开(Ⅰ)型层间断裂韧度的影响,研究表明:随着热塑组分含量的提高,复合材料的裂纹起始应变能量释放率(GⅠC-init)与裂纹稳态扩展应变能量释放率(GⅠC-prop)都获得了大幅度提升,在增韧组分质量分数大于20%时,增韧聚芳醚酰亚胺粉体可在复合材料层间富集形成层间高韧区,并在复合材料层间形成了由"连续相"和"分散相"组成的层间增韧结构。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
钟翔屿
张代军
包建文
李伟东
关键词 碳纤维热塑性树脂环氧Ⅰ型层间断裂韧度    
Abstract:The toughened composite was prepared by the domestic high strength medium modulus carbon fiber (CCF800H) reinforced epoxy resin matrix. The influence of different content of toughening thermoplastic within epoxies on the mode-Ⅰ interlaminar fracture toughness (GⅠC) of composites was investigated. The results show the initial strain energy release rate (GⅠC-init) and the propagational strain energy release rate (GⅠC-prop) of composites improve remarkably with the increasing of content of toughening thermoplastics within epoxy matrix. In the case of mass fraction of thermoplastic is greater than 20% of epoxy, the toughening aromatic polyetherimide particle can be concentrated on the interlayer of composite to form the high interlaminar toughness zone. The interlaminar toughened structure constituted by ‘continuous phase’ and ‘dispersion phase’ is fabricated on the interlayer of composite.
Key wordscarbon fiber    thermoplastic    epoxy    mode-Ⅰinterlaminar fracture toughness
收稿日期: 2016-11-01      出版日期: 2017-08-10
中图分类号:  TQ323.5  
通讯作者: 钟翔屿(1976-),男,高级工程师,主要从事高性能树脂及其先进复合材料研究,联系地址:北京市81信箱3分箱(100095),E-mail:xyzhong2003@sohu.com     E-mail: xyzhong2003@sohu.com
引用本文:   
钟翔屿, 张代军, 包建文, 李伟东. 热塑性树脂含量对CCF800H碳纤维环氧复合材料Ⅰ型层间断裂韧度的影响[J]. 材料工程, 2017, 45(8): 55-61.
ZHONG Xiang-yu, ZHANG Dai-jun, BAO Jian-wen, LI Wei-dong. Influence of Content of Toughening Thermoplastic on Mode-Ⅰ Interlaminar Fracture Toughness of Epoxy Composite Reinforced by CCF800H Carbon Fiber. Journal of Materials Engineering, 2017, 45(8): 55-61.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.001308      或      http://jme.biam.ac.cn/CN/Y2017/V45/I8/55
[1] 陈祥宝.先进树脂基复合材料的发展[J]. 航空材料学报, 2000, 20(1):46-54. CHEN X B. Development of advanced polymer composites[J]. Journal of Aeronautical Materials, 2000,20(1):46-54.
[2] ENDO M. Composites for aircraft and aerospace application[J]. SEN-I GAKKAISHI, 2014,70(9):508-511.
[3] 景鹏展, 朱姝, 余木火, 等. 基于碳纤维表面修饰制备碳纤维织物增强聚苯硫醚(CFF/PPS)热塑性复合材料[J]. 材料工程, 2016, 44(3):21-27. JING P Z, ZHU S, YU M H, et al. Preparation of carbon fiber fabric reinforced polyphenylene sulfide (CFF/PPS) thermoplastic composites based on surface modification of carbon fibers[J]. Journal of Materials Engineering, 2016, 44(3):21-27.
[4] 陈祥宝, 张宝艳, 邢丽英. 先进树脂基复合材料技术发展及应用现状[J]. 中国材料进展, 2009, 28(6):2-12. CHEN X B, ZHANG B Y,XING L Y. Application and development of advanced polymer matrix composites[J]. Materials China, 2009, 28(6):2-12.
[5] 赵稼祥. 民用航空和先进复合材料[J].高科技纤维与应用, 2007, 32(2):6-10. ZHAO J X. Civil aviation and advanced composite materials[J]. Hi-Tech Fiber & Application, 2007,32(2):6-10.
[6] 杜善义. 先进复合材料和航空航天[J]. 复合材料学报, 2008, 22(1):1-7. DU S Y. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica, 2008, 22(1):1-7.
[7] 陈绍杰. 复合材料技术与大型飞机[J]. 航空学报, 2008, 29(3):605-610. CHEN S J. Composite technology and large aircraft[J]. Acta Aeronautica et Astronautic Sinica, 2008, 29(3):605-610.
[8] 刘代军, 陈亚莉. 先进树脂基复合材料在航空工业中的应用[J]. 材料工程, 2008,(增刊1):194-198. LIU D J, CHEN Y L. Application of advanced polymer matrix composites in aviation industry[J].Journal of Materials Engineering, 2008,(Suppl 1):194-198.
[9] 沈真, 杨胜春.飞机结构用复合材料的力学性能要求[J]. 材料工程, 2007,(增刊1):248-252. SHEN Z, YANG S C. Property requirements of composite systems applicable to aircraft structures[J].Journal of Materials Engineering,2007,(Suppl 1):248-252.
[10] LOBANOV M V, GULYAEV A I, BABIN A N. Improvement of the impact and crack resistance of epoxy thermosets and thermoset-based composites with the use of thermoplastics as modifiers[J]. Polymer Science Series B, 2016, 58(1):1-12.
[11] STEPHAN S. Fiber-reinforced composites based on epoxy resins modified with elastomers and surface-modified silica nanoparticles[J]. Journal of Materials Science, 2014, 49(6):2391-2402.
[12] GAN W J, ZHAN G Z, WANG M H. Rheological behaviors and structural transitions in a polyethersulfone-modified epoxy system during phase separation[J]. Colloid and Polymer Science, 2007, 285(15):1727-1731.
[13] HWANG J H, LEE C S, HWANG W. Effect of crack propagation directions on the interlaminar fracture toughness of carbon/epoxy composite materials[J]. Applied Composite Materials, 2001, 8(6):411-433.
[14] 王瑞, 郭兴峰, 王广峰. 织物增强复合材料层合板Ⅰ型层间断裂特性[J]. 复合材料学报, 2004, 21(1):68-72. WANG R, GUO X F,WANG G F. Study on the mode Ⅰ interlaminar fracture toughness of fabrix reinforced laminates[J]. Acta Materiae Compositae Sinica, 2004, 21(1):68-72.
[15] DOMENICO B, FABRIZIO G, PAOLO L. Interaction between interlaminar and intralaminar damage in fiber-reinforced composite laminates[J]. International Journal for Computational Methods in Engineering Science and Mechanics, 2008, 37(9):358-373.
[16] DOMENICO B, FABRIZIO G, PAOLO L. Dynamic mode Ⅰ and mode Ⅱ crack propagation in fiber reinforced composites[J]. Mechanics of Advanced Materials and Structures, 2009, 38(16):442-455.
[17] BONHOMME J, VINA J, ARGUELLES A, et al. Influence of the matrix toughness in carbon-epoxy composites subjected to delamination under modes Ⅰ, Ⅱ, and mixed Ⅰ/Ⅱ[J]. Mechanics of Advanced Materials and Structures, 2013, 20:679-686.
[18] FERET V, HOSSEIN G, HUBERT P. Effect of fibre volume fraction on mixed-mode fracture of a fabric carbon/epoxy composite[J]. Applied Composite Materials, 2013, 20(4):415-429.
[1] 陈珂龙, 张桐, 崔溢, 王智勇. 超支化聚合物(HBPs)改性环氧树脂的研究进展[J]. 材料工程, 2019, 47(7): 11-18.
[2] 李曦. 二维和零维纳米材料协同增强的高性能纳米复合材料[J]. 材料工程, 2019, 47(4): 47-55.
[3] 何烨, 肖建文, 姚烛威, 符应飘, 徐樑华, 曹维宇. 碳纤维表面物理结构对复合材料界面剪切强度的影响[J]. 材料工程, 2019, 47(2): 146-152.
[4] 徐建林, 刘晓琦, 杨文龙, 牛磊, 赵金强. Nano-Sb2O3/BEO/PP复合材料阻燃性能[J]. 材料工程, 2019, 47(1): 84-90.
[5] 张博文, 唐禹尧, 崔玉青, 魏玮, 李小杰, 罗静, 刘晓亚. 六咪唑环三磷腈的合成及其作为环氧树脂固化促进剂的性能[J]. 材料工程, 2019, 47(1): 91-96.
[6] 乔栩, 林治, 林晓丹. 石墨烯的制备及其对环氧树脂导电性能的影响[J]. 材料工程, 2018, 46(7): 53-60.
[7] 于长清, 陈利, 裴雨辰. 碳纤维表面涂层对碳纤维增强锂铝硅玻璃陶瓷复合材料热导率的影响[J]. 材料工程, 2018, 46(6): 101-105.
[8] 左银泽, 陈亮, 朱斌, 高延敏. 纳米氧化锌负载氧化石墨烯/环氧树脂复合材料性能研究[J]. 材料工程, 2018, 46(5): 22-28.
[9] 王迎芬, 刘刚, 彭公秋, 李韶亮, 谢富原. 国产T700级碳纤维/双马来酰亚胺树脂复合材料界面性能[J]. 材料工程, 2018, 46(4): 140-145.
[10] 周远良, 赛义德, 张黎, 贾韦迪, 段玉平, 董星龙. 树脂基Fe纳米粒子及碳纤维复合吸波平板的制备与性能[J]. 材料工程, 2018, 46(3): 41-47.
[11] 龙伟漾, 吴玉萍, 高文文, 洪晟. Zn-Al-Mg-RE涂层在含SRB海水中的耐腐蚀性与机理[J]. 材料工程, 2018, 46(3): 91-97.
[12] 许良, 费昺强, 马少华, 回丽, 黄国栋. 湿热环境下复合材料层板拉-压性能[J]. 材料工程, 2018, 46(3): 124-130.
[13] 李闯, 李伟, 王明宇, 王柏臣, 冯博文, 李勃翰, 李强. 功能化氧化石墨烯改性双马树脂及其复合材料[J]. 材料工程, 2018, 46(12): 48-53.
[14] 郭妙才, 洪旭辉, 李亚锋. 非均相固化体系对复合材料树脂微观力学均匀性的影响[J]. 材料工程, 2018, 46(10): 142-148.
[15] 任志东, 梁晨曦, 郝思嘉, 邢悦, 田俊鹏, 戴圣龙, 杨程. 低熔点固化剂对环氧树脂性能的影响[J]. 材料工程, 2018, 46(10): 156-161.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn