Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (8): 55-61    DOI: 10.11868/j.issn.1001-4381.2016.001308
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
热塑性树脂含量对CCF800H碳纤维环氧复合材料Ⅰ型层间断裂韧度的影响
钟翔屿1,2, 张代军1,2, 包建文1,2, 李伟东1,2
1. 北京航空材料研究院 先进复合材料国防科技重点实验室, 北京 100095;
2. 中航复合材料有限责任公司 复合材料中心, 北京 101300
Influence of Content of Toughening Thermoplastic on Mode-Ⅰ Interlaminar Fracture Toughness of Epoxy Composite Reinforced by CCF800H Carbon Fiber
ZHONG Xiang-yu1,2, ZHANG Dai-jun1,2, BAO Jian-wen1,2, LI Wei-dong1,2
1. National Key Laboratory of Advanced Composites, Beijing Institute of Aeronautical Materials, Beijing 100095, China;
2. Composite Center, AVIC Composite Corporation Ltd., Beijing 101300, China
全文: PDF(5308 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用国产CCF800H高强中模碳纤维增强环氧制备了复合材料,研究不同热塑性树脂含量对复合材料张开(Ⅰ)型层间断裂韧度的影响,研究表明:随着热塑组分含量的提高,复合材料的裂纹起始应变能量释放率(GⅠC-init)与裂纹稳态扩展应变能量释放率(GⅠC-prop)都获得了大幅度提升,在增韧组分质量分数大于20%时,增韧聚芳醚酰亚胺粉体可在复合材料层间富集形成层间高韧区,并在复合材料层间形成了由"连续相"和"分散相"组成的层间增韧结构。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
钟翔屿
张代军
包建文
李伟东
关键词 碳纤维热塑性树脂环氧Ⅰ型层间断裂韧度    
Abstract:The toughened composite was prepared by the domestic high strength medium modulus carbon fiber (CCF800H) reinforced epoxy resin matrix. The influence of different content of toughening thermoplastic within epoxies on the mode-Ⅰ interlaminar fracture toughness (GⅠC) of composites was investigated. The results show the initial strain energy release rate (GⅠC-init) and the propagational strain energy release rate (GⅠC-prop) of composites improve remarkably with the increasing of content of toughening thermoplastics within epoxy matrix. In the case of mass fraction of thermoplastic is greater than 20% of epoxy, the toughening aromatic polyetherimide particle can be concentrated on the interlayer of composite to form the high interlaminar toughness zone. The interlaminar toughened structure constituted by ‘continuous phase’ and ‘dispersion phase’ is fabricated on the interlayer of composite.
Key wordscarbon fiber    thermoplastic    epoxy    mode-Ⅰinterlaminar fracture toughness
收稿日期: 2016-11-01      出版日期: 2017-08-10
中图分类号:  TQ323.5  
通讯作者: 钟翔屿(1976-),男,高级工程师,主要从事高性能树脂及其先进复合材料研究,联系地址:北京市81信箱3分箱(100095),E-mail:xyzhong2003@sohu.com     E-mail: xyzhong2003@sohu.com
引用本文:   
钟翔屿, 张代军, 包建文, 李伟东. 热塑性树脂含量对CCF800H碳纤维环氧复合材料Ⅰ型层间断裂韧度的影响[J]. 材料工程, 2017, 45(8): 55-61.
ZHONG Xiang-yu, ZHANG Dai-jun, BAO Jian-wen, LI Wei-dong. Influence of Content of Toughening Thermoplastic on Mode-Ⅰ Interlaminar Fracture Toughness of Epoxy Composite Reinforced by CCF800H Carbon Fiber. Journal of Materials Engineering, 2017, 45(8): 55-61.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.001308      或      http://jme.biam.ac.cn/CN/Y2017/V45/I8/55
[1] 陈祥宝.先进树脂基复合材料的发展[J]. 航空材料学报, 2000, 20(1):46-54. CHEN X B. Development of advanced polymer composites[J]. Journal of Aeronautical Materials, 2000,20(1):46-54.
[2] ENDO M. Composites for aircraft and aerospace application[J]. SEN-I GAKKAISHI, 2014,70(9):508-511.
[3] 景鹏展, 朱姝, 余木火, 等. 基于碳纤维表面修饰制备碳纤维织物增强聚苯硫醚(CFF/PPS)热塑性复合材料[J]. 材料工程, 2016, 44(3):21-27. JING P Z, ZHU S, YU M H, et al. Preparation of carbon fiber fabric reinforced polyphenylene sulfide (CFF/PPS) thermoplastic composites based on surface modification of carbon fibers[J]. Journal of Materials Engineering, 2016, 44(3):21-27.
[4] 陈祥宝, 张宝艳, 邢丽英. 先进树脂基复合材料技术发展及应用现状[J]. 中国材料进展, 2009, 28(6):2-12. CHEN X B, ZHANG B Y,XING L Y. Application and development of advanced polymer matrix composites[J]. Materials China, 2009, 28(6):2-12.
[5] 赵稼祥. 民用航空和先进复合材料[J].高科技纤维与应用, 2007, 32(2):6-10. ZHAO J X. Civil aviation and advanced composite materials[J]. Hi-Tech Fiber & Application, 2007,32(2):6-10.
[6] 杜善义. 先进复合材料和航空航天[J]. 复合材料学报, 2008, 22(1):1-7. DU S Y. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica, 2008, 22(1):1-7.
[7] 陈绍杰. 复合材料技术与大型飞机[J]. 航空学报, 2008, 29(3):605-610. CHEN S J. Composite technology and large aircraft[J]. Acta Aeronautica et Astronautic Sinica, 2008, 29(3):605-610.
[8] 刘代军, 陈亚莉. 先进树脂基复合材料在航空工业中的应用[J]. 材料工程, 2008,(增刊1):194-198. LIU D J, CHEN Y L. Application of advanced polymer matrix composites in aviation industry[J].Journal of Materials Engineering, 2008,(Suppl 1):194-198.
[9] 沈真, 杨胜春.飞机结构用复合材料的力学性能要求[J]. 材料工程, 2007,(增刊1):248-252. SHEN Z, YANG S C. Property requirements of composite systems applicable to aircraft structures[J].Journal of Materials Engineering,2007,(Suppl 1):248-252.
[10] LOBANOV M V, GULYAEV A I, BABIN A N. Improvement of the impact and crack resistance of epoxy thermosets and thermoset-based composites with the use of thermoplastics as modifiers[J]. Polymer Science Series B, 2016, 58(1):1-12.
[11] STEPHAN S. Fiber-reinforced composites based on epoxy resins modified with elastomers and surface-modified silica nanoparticles[J]. Journal of Materials Science, 2014, 49(6):2391-2402.
[12] GAN W J, ZHAN G Z, WANG M H. Rheological behaviors and structural transitions in a polyethersulfone-modified epoxy system during phase separation[J]. Colloid and Polymer Science, 2007, 285(15):1727-1731.
[13] HWANG J H, LEE C S, HWANG W. Effect of crack propagation directions on the interlaminar fracture toughness of carbon/epoxy composite materials[J]. Applied Composite Materials, 2001, 8(6):411-433.
[14] 王瑞, 郭兴峰, 王广峰. 织物增强复合材料层合板Ⅰ型层间断裂特性[J]. 复合材料学报, 2004, 21(1):68-72. WANG R, GUO X F,WANG G F. Study on the mode Ⅰ interlaminar fracture toughness of fabrix reinforced laminates[J]. Acta Materiae Compositae Sinica, 2004, 21(1):68-72.
[15] DOMENICO B, FABRIZIO G, PAOLO L. Interaction between interlaminar and intralaminar damage in fiber-reinforced composite laminates[J]. International Journal for Computational Methods in Engineering Science and Mechanics, 2008, 37(9):358-373.
[16] DOMENICO B, FABRIZIO G, PAOLO L. Dynamic mode Ⅰ and mode Ⅱ crack propagation in fiber reinforced composites[J]. Mechanics of Advanced Materials and Structures, 2009, 38(16):442-455.
[17] BONHOMME J, VINA J, ARGUELLES A, et al. Influence of the matrix toughness in carbon-epoxy composites subjected to delamination under modes Ⅰ, Ⅱ, and mixed Ⅰ/Ⅱ[J]. Mechanics of Advanced Materials and Structures, 2013, 20:679-686.
[18] FERET V, HOSSEIN G, HUBERT P. Effect of fibre volume fraction on mixed-mode fracture of a fabric carbon/epoxy composite[J]. Applied Composite Materials, 2013, 20(4):415-429.
[1] 张成林, 董抒华, 李丽君, 田龙雨, 谭洪生. E-玻纤/环氧树脂预浸料固化动力学及其动态热力学性能[J]. 材料工程, 2020, 48(9): 152-157.
[2] 包建文, 钟翔屿, 张代军, 彭公秋, 李伟东, 石峰晖, 李晔, 姚锋, 常海峰. 国产高强中模碳纤维及其增强高韧性树脂基复合材料研究进展[J]. 材料工程, 2020, 48(8): 33-48.
[3] 肇研, 刘寒松. 连续纤维增强高性能热塑性树脂基复合材料的制备与应用[J]. 材料工程, 2020, 48(8): 49-61.
[4] 李为民, 彭超义, 杨金水, 邢素丽. PTFE/epoxy全有机超疏水涂层制备[J]. 材料工程, 2020, 48(7): 162-169.
[5] 李翰, 樊茂华, 王纳斯丹, 范保鑫, 冯振宇. 碳纤维环氧树脂复合材料热响应预报方法[J]. 材料工程, 2020, 48(5): 49-55.
[6] 康宸, 刘倓, 武帅, 赵雅娴, 徐樑华. PAN纤维热松弛行为控制与聚集态结构调控[J]. 材料工程, 2020, 48(4): 165-171.
[7] 侯桂香, 谢建强, 姚少巍, 张云杰, 蓝文. 生物基没食子酸环氧树脂/纳米氧化锌抗菌涂层的制备与性能[J]. 材料工程, 2020, 48(3): 34-39.
[8] 冯艳艳, 李彦杰, 杨文, 钟开应. 原位生长法制备花瓣状氢氧化钴及其电化学性能[J]. 材料工程, 2020, 48(3): 121-126.
[9] 齐业雄, 姜亚明, 李嘉禄. 混杂比对碳/芳纶纤维混杂纬编双轴向多层衬纱织物增强复合材料力学性能的影响[J]. 材料工程, 2020, 48(2): 71-78.
[10] 郑凌祺, 李刚, 杨小平, 李强, 石凌飞. 环糊精微球改性环氧树脂的制备及其碳纤维复合材料的X射线穿透性研究[J]. 材料工程, 2020, 48(11): 170-176.
[11] 李国丽, 彭公秋, 钟翔屿. 国产高性能碳纤维表征分析及复合材料力学性能研究[J]. 材料工程, 2020, 48(10): 74-81.
[12] 陈宇, 张代军, 李军, 温嘉轩, 陈祥宝. 石墨烯改性碳纤维树脂基复合材料的制备和性能评价[J]. 材料工程, 2020, 48(10): 82-87.
[13] 陈宇飞, 耿成宝, 郭红缘, 岳春艳, 柴铭茁. KH-SiO2/PES/BMI-F51复合材料的介电性能[J]. 材料工程, 2019, 47(8): 103-109.
[14] 顾善群, 刘燕峰, 李军, 陈祥宝, 张代军, 邹齐, 肖锋. 碳纤维/环氧树脂复合材料高速冲击性能[J]. 材料工程, 2019, 47(8): 110-117.
[15] 张世杰, 王汝敏, 刘宁, 廖英强, 程勇. 纺丝工艺对T800碳纤维及其复合材料性能的影响[J]. 材料工程, 2019, 47(8): 118-124.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn