Please wait a minute...
材料工程  2018, Vol. 46 Issue (6): 43-50    DOI: 10.11868/j.issn.1001-4381.2016.001319
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
杨朝1, 杨金萍1,2, 王静1,2, 姚少巍1, 刘刚1
1. 华北理工大学 材料科学与工程学院, 河北 唐山 063009;
2. 华北理工大学 河北省无机非金属材料重点实验室, 河北 唐山 063009
Preparation of Hollow Fe3O4 Nanospheres & Spongy Carbon Composite and Its Characterization of Electrochemical Performance
YANG Zhao1, YANG Jin-ping1,2, WANG Jing1,2, YAO Shao-wei1, LIU Gang1
1. School of Materials Science and Engineering, North China University of Science and Technology, Tangshan 063009, Hebei, China;
2. Key Laboratory of Inorganic Non-metallic Materials of Hebei Province, North China University of Science and Technology, Tangshan 063009, Hebei, China
全文: PDF(3340 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 利用溶剂热法以FeCl3·6H2O为铁源,制备纳米级Fe3O4空心球进而获得三维纳米结构的空心球Fe3O4&海绵状碳复合材料,探讨制备方法和复合比例对样品电化学性能的影响。X射线衍射(XRD)、场发射电子显微镜(FE-SEM)和透射电子显微镜(TEM)表征材料的组成和形貌,氮气等温吸脱附表征材料的比表面积和孔情况,蓝电系统LAND CT2001C恒电流充放电表征材料的电化学性能。电化学实验表明:采用同步溶剂热法、Fe3O4/C=2:1合成的样品具有优异的电化学性能,在0.1A·g-1下循环100次后比容量为1302.6mAh·g-1。直径135nm Fe3O4空心球均匀分散在海绵状碳的表面能更好地与电解液接触,在海绵状碳的3D导电网络上增大了电化学反应面积,进而改善该材料的电化学性能。
E-mail Alert
关键词 锂离子电池负极材料溶剂热法Fe3O4&C复合材料    
Abstract:Using FeCl3·6H2O as iron source, the hollow spheres-in-porous three-dimension (3D)-nanostructure denotes the structure of the hollow Fe3O4 nanospheres & spongy carbon composite was synthesized by the disposable solvothermal method. The effect of the preparation methods and the proportion ratio on the electrochemical properties of the samples was investigated. The phase, composition and morphology of the hollow Fe3O4 nanosphere & spongy carbon composites were examined by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The specific surface area and pore size distribution of the specimen were characterized by nitrogen adsorption-desorption isotherm method. Galvanostatic cycling test was carried out with a LAND CT2001C battery test system to characterize the electrochemical performance. The electrochemical experiment results indicate that the sample exhibits the better electrochemical properties with the synchronization solvothermal method and compound ratio Fe3O4&C=2:1. The reversible specific capacity remains 1302.6mAh·g-1 up to 100 cycles at the current density of 0.1A·g-1. A homogeneous distribution of hollow Fe3O4 nanospheres(135nm) in the spongy carbon conductive 3D-network significantly enhances the effective contact with electrolyte and increases electrochemical reaction area, so that improves electrochemical performance of the composite material.
Key wordsLi-ion battery    anode material    solvothermal method    Fe3O4&    C    composite
收稿日期: 2016-11-03      出版日期: 2018-06-14
中图分类号:  TB332  
通讯作者: 王静(1972-),女,教授,博士,主要研究方向:能源材料,联系地址:河北唐山曹妃甸区曹妃甸渤海大道21号华北理工大学(063000),     E-mail:
杨朝, 杨金萍, 王静, 姚少巍, 刘刚. 空心球Fe3O4&海绵状碳复合材料制备及其电化学性能表征[J]. 材料工程, 2018, 46(6): 43-50.
YANG Zhao, YANG Jin-ping, WANG Jing, YAO Shao-wei, LIU Gang. Preparation of Hollow Fe3O4 Nanospheres & Spongy Carbon Composite and Its Characterization of Electrochemical Performance. Journal of Materials Engineering, 2018, 46(6): 43-50.
链接本文:      或
[1] ARMAND M,TARASCON J M. Building better batteries[J].Nature, 2008, 451(7179):652-657.
[2] HU M,PANG X,ZHOU Z. Recent progress in high-voltage lithium ion batteries[J].Journal of Power Sources, 2013, 237(3):229-242.
[3] PARK M,ZHANG X,CHUNG M, et al. A review of conduction phenomena in Li-ion batteries[J].Journal of Power Sources, 2010, 195(24):7904-7929.
[4] GORIPARTI S,MIELE E,ANGELIS F D, et al. Review on recent progress of nanostructured anode materials for Li-ion batteries[J].Journal of Power Sources, 2014, 257(3):421-443.
[5] XIA Z Y,WEI D,ANITOWSKA E, et al. Electrochemically exfoliated graphene oxide/iron oxide composite foams for lithium storage, produced by simultaneous graphene reduction and Fe(OH)3 condensation[J].Carbon, 2015, 84(1):254-262.
[6] LUO G,LU Y,ZENG S, et al. Synthesis of rGO-Fe3O4-SnO2-C quaternary hybrid mesoporous nanosheets as a high-performance anode material for lithium ion batteries[J].Electrochimica Acta, 2015, 182:715-722.
[7] ZHANG Y,YUE K,ZHAO H, et al. Bovine serum albumin assisted synthesis of Fe3O4@C@Mn3O4 multilayer core-shell porous spheres as anodes for lithium ion battery[J].Chemical Engineering Journal, 2016, 291:238-243.
[8] HU C,GUO J,WEN J, et al. Preparation and electrochemical performance of nano-Co3O4 anode materials from spent Li-ion batteries for lithium-ion batteries[J].Journal of Materials Science & Technology, 2013,29(3):215-220.
[9] JO M R,JUNG J,LEE G H, et al. Fe3O4 nanoparticles encapsulated in one-dimensional Li4Ti5O12 nanomatrix:an extremely reversible anode for long life and high capacity Li-ion batteries[J].Nano Energy, 2016, 19:246-256.
[10] MA D,YUAN S,CAO Z. Three-dimensionally macroporous graphene-supported Fe3O4 composite as anode material for Li-ion batteries with long cycling life and ultrahigh rate capability[J].Chinese Science Bulletin, 2014, 59(17):2017-2023.
[11] GENG H B,ZHOU Q,PAN Y, et al. Preparation of fluorine-doped, carbon-encapsulated hollow Fe3O4 spheres as an efficient anode material for Li-ion batteries[J].Nanoscale, 2014, 6(7):3889-3894.
[12] DONG Y,MD K,CHUI Y S, et al. Synthesis of CNT@Fe3O4-C hybrid nanocables as anode materials with enhanced electrochemical performance for lithium ion batteries[J].Electrochimica Acta, 2015, 176:1332-1337.
[13] ZHAO D,HAO Q,XU C. Facile fabrication of composited Mn3O4/Fe3O4 nanoflowers with high electrochemical performance as anode material for lithium ion batteries[J].Electrochimica Acta, 2015, 180:493-500.
[14] JIN B,CHEN G,ZHONG X, et al. Graphene/Fe3O4 hollow sphere nanocomposites as superior anode material for lithiun ion batteries[J].Ceramics International, 2014, 40(7):10359-10365.
[15] WANG J,GAO M,WANG D, et al. Chemical vapor deposition prepared bi-morphological carbon-coated Fe3O4 composites as anode materials for lithium-ion batteries[J].Journal of Power Sources, 2015, 282:257-264.
[16] ZHANG S,HE W,ZHANG X, et al. Fabricating Fe3O4/Fe/biocarbon fibers using cellulose nanocrystals for high-rate Li-ion battery anode[J].Electrochimica Acta, 2015, 174:1175-1184.
[17] WANG Q H,CHEN D,CHEN J, et al. Facile synthesis and electrochemical properties of Fe3O4 hexahedra for Li-ion battery anode[J].Materials Letters, 2015, 141:319-322.
[18] YANG L,HU J,DONG A, et al. Novel Fe3O4-CNTs nanocomposite for Li-ion batteries with enhanced electrochemical performance[J].Electrochimica Acta, 2014, 144:235-242.
[19] YUAN Y,LIANG H. Hierarchical micro-architectures of electrodes for energy storage[J].Journal of Power Sources, 2015, 284:435-445.
[20] PAMPAL E S,STOJANOVSKA E,SIMON B, et al. A review of nanofibrous structures in lithium ion batteries[J].Journal of Power Sources, 2015, 300:199-215.
[21] RAVIKUMAR R,GOPUKUMAR S. Understanding the capacity enhancement of Fe3O4/semi exfoliated graphite oxide thru the solvent-EC:DEC reinforcement for lithium ion battery anode[J].Journal of Power Sources, 2015, 289:146-153.
[22] WANG Q,YAN J,WANG Y, et al. Three-dimensional flower-like and hierarchical porous carbon materials as high-rate performance electrodes for supercapacitors[J].Carbon, 2014, 67(2):119-127.
[23] JI L,TAN Z,KUYKENDALL T R, et al. Fe3O4 nanoparticle-integrated graphene sheets for high-performance half and full lithium ion cells[J].Physical Chemistry Chemical Physics, 2011, 13(15):7170-7177.
[24] LI Z,ZHAO H,WANG J, et al. 3D heterostructure Fe3O4/Ni/C nanoplate arrays on Ni foam as binder-free anode for high performance lithium-ion battery[J].Electrochimica Acta, 2015, 182:398-405.
[25] IM M E,DE P C,JI Y K, et al. Enhanced electrochemical performance of template-free carbon-coated iron(Ⅱ,Ⅲ) oxide hollow nanofibers as anode material for lithium-ion batteries[J].Journal of Power Sources, 2015, 284:392-399.
[26] LUBKE M,MAKWANA N M,GRUAR R, et al. High capacity nanocomposite Fe3O4/Fe anodes for Li-ion batteries[J].Journal of Power Sources, 2015, 291:102-107.
[27] QIU W,BALOGUN M S,LUO Y, et al. Three-dimensional Fe3O4 nanotube array on carbon cloth prepared from a facile route for lithium ion batteries[J].Electrochimica Acta, 2016, 193:32-38.
[28] MABUCHI A,FUJIMOTO H,TOKUMITSU K, et al. Charge-discharge mechanism of graphitized mesocarbon microbeads[J].Journal of the Electrochemical Society, 1995, 142(9):3049-3051.
[29] XIN S,GUO Y G,WAN L J. Nanocarbon networks for advanced rechargeable lithium batteries[J].Accounts of Chemical Research, 2012, 45(10):1759-1769.
[30] SONG R,SONG H,ZHOU J, et al. Hierarchical porous carbon nanosheets and their favorable high-rate performance in lithium ion batteries[J].Journal of Materials Chemistry, 2012, 22(24):12369-12374.
[31] GAO G,ZHANG Q,CHENG X B, et al. Synthesis of three-dimensional rare-earth ions doped CNTs-GO-Fe3O4 hybrid structures using one-pot hydrothermal method[J].Journal of Alloys and Compounds, 2015, 649:82-88.
[1] 胡智瑜, 马青松. 异质元素改性聚硅氧烷衍生SiOC陶瓷研究进展[J]. 材料工程, 2019, 47(7): 19-25.
[2] 杨旭东, 安涛, 邹田春, 巩天琛. 湿热环境对碳纤维增强树脂基复合材料力学性能的影响及其损伤机理[J]. 材料工程, 2019, 47(7): 84-91.
[3] 徐斌, 陈程华, 张彩霞, 鲁聪达, 倪忠进. 热分解法制备Cu空心微球及其光热转换性能[J]. 材料工程, 2019, 47(7): 57-63.
[4] 张平生, 辛勇, 曹传亮, 艾凡荣. 壳聚糖/羟基磷灰石表面修饰聚己内酯多孔骨支架的制备及性能[J]. 材料工程, 2019, 47(7): 64-70.
[5] 马明星, 王志新, 梁存, 周家臣, 张德良, 朱达川. CeO2掺杂对AlCoCrCuFe高熵合金的组织结构与摩擦磨损性能的影响[J]. 材料工程, 2019, 47(7): 106-111.
[6] 王桂芳, 刘忠侠, 张国鹏. 球磨时间对热压烧结制备TiC-CoCrFeNi复合材料微观组织及力学性能的影响[J]. 材料工程, 2019, 47(6): 94-100.
[7] 冀光普, 何秀芳, 廖海峰, 戴乐阳, 孙迪, 蔡谷昌. 等离子体辅助球磨制备表面修饰片状纳米Cu粉及摩擦学性能[J]. 材料工程, 2019, 47(6): 114-120.
[8] 崔超婕, 田佳瑞, 杨周飞, 金鹰, 董卓娅, 谢青, 张刚, 叶珍珍, 王瑾, 刘莎, 骞伟中. 石墨烯在锂离子电池和超级电容器中的应用展望[J]. 材料工程, 2019, 47(5): 1-9.
[9] 欧阳佩旋, 弭光宝, 李培杰, 何良菊, 曹京霞, 黄旭. NiCrAl/YSZ/NiCrAl-B.e复合涂层对α+β型高温钛合金燃烧产物的影响[J]. 材料工程, 2019, 47(5): 43-52.
[10] 袁晓静, 查柏林, 陈小虎, 禹志航, 王新军. WC-10Co-4Cr涂层在不同温度酸与NaCl溶液中的耐腐蚀性能[J]. 材料工程, 2019, 47(5): 63-71.
[11] 王勇刚, 刘和剑, 回丽, 职山杰, 刘海青. 激光熔覆原位自生碳化物增强自润滑耐磨复合涂层的高温摩擦学性能[J]. 材料工程, 2019, 47(5): 72-78.
[12] 尚楷, 武志红, 张路平, 王倩, 郑海康. 模板法制备MoSi2/竹炭复合材料及吸波性能[J]. 材料工程, 2019, 47(5): 122-128.
[13] 何宗倍, 张瑞谦, 付道贵, 李鸣, 陈招科, 邱邵宇. 不同界面SiC纤维束复合材料的拉伸力学行为[J]. 材料工程, 2019, 47(4): 25-31.
[14] 李亚锋, 礼嵩明, 黑艳伟, 邢丽英, 陈祥宝. 太阳辐照对芳纶纤维及其复合材料性能的影响[J]. 材料工程, 2019, 47(4): 39-46.
[15] 李曦. 二维和零维纳米材料协同增强的高性能纳米复合材料[J]. 材料工程, 2019, 47(4): 47-55.
Full text



版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持