The anode oxide of nanocrystalline Mn-Mo-Ce was prepared by anode electro-deposition technology, and its nanostructure and selective electro-catalytic performance were investigated using the SEM, EDS, XRD, HRTEM, electrochemical technology and oxygen evolution efficiency testing. Furthermore, the selective electro-catalytic mechanism of oxygen evolution and chlorine depression was discussed. The results show that the mesh-like nanostructure Mn-Mo-Ce oxide anode with little cerium doped is obtained, and the oxygen evolution efficiency for the anode in the seawater is 99.51%, which means a high efficiency for the selective electro-catalytic for the oxygen evolution. Due to the structural characteristics of γ-MnO2, the OH- ion is preferentially absorbed, while Cl- absorption is depressed. OH- accomplishes the oxygen evolution process during the valence transition electrocatalysis of Mn4+/Mn3+, completing the selective electro-catalysis process. Ce doping greatly increases the reaction activity, and promotes the absorption and discharge; the rising interplanar spacing between active (100) crystalline plane promotes OH- motion and the escape of newborn O2, so that the selective electro-catalytic property with high efficient oxygen evolution and chlorine depression is achieved from the nano morphology effect.
FUJIMURA K , MATSUI T , HABAZAKI H , et al. The durability of manganese molybdenum oxide anodes for oxygen evolution in seawater electrolysis[J]. Electrochimica Acta, 2000, 45 (14): 2297- 2303.
doi: 10.1016/S0013-4686(00)00316-9
2
HABAZAKI H , MATUI T , KAWASHIMA A , et al. Nanocrystalline manganese-molybdenu-tungsten oxide anodes for oxygen evolution in seawater electrolysis[J]. Scripta Mater, 2001, 44 (8): 1659- 1662.
SHI Y H , ZHAO S L , LIANG P , et al. Effect of pH value on structure and properties of anodic electrodeposited Mn-Mo oxide[J]. Journal of Materials Engineering, 2016, 44 (12): 7- 12.
doi: 10.11868/j.issn.1001-4381.2016.12.002
4
SUN M , LAN B , YU L , et al. Manganese oxides with different crystalline structures:facile hydrothermal synthesis and catalytic activities[J]. Mater Lett, 2012, 86, 18- 20.
doi: 10.1016/j.matlet.2012.07.011
5
TIAN W , YANG H , FAN X , et al. Catalytic reduction of NOx with NH3 over different-shaped MnO2 at low temperature[J]. J Hazard Mater, 2011, 188 (1/3): 105- 109.
FU H R , MENG H M , SHI Y H , et al. Influence of doped elements on the property of manganese mixed oxide anode for oxygen production by electrolyzing seawater[J]. Journal of University of Science and Technology Beijing, 2008, 30 (11): 1290- 1295.
doi: 10.3321/j.issn:1001-053X.2008.11.016
8
JIANG N , MENG H M . The durability of different elements doped manganese dioxide-coated anodes for oxygen evolution in seawater electrolysis[J]. Surface and Coatings Technology, 2012, 206 (21): 4362- 4367.
doi: 10.1016/j.surfcoat.2012.04.059
JIANG N , MENG H M . The synthesis of two-dimensional ultrathin nanosheets by using plant membrane as template and photo catalytic performance[J]. Functional Materials, 2014, 45 (6): 6083- 6086.
WANG C , YANG Z N , ZHANG Y . Study on electrodepositing preparation and mechanism of rare earth alloy materials[J]. Applied Chemical Industry, 2013, 42 (10): 1896- 1898.
GUI J F , JIANG L X , ZHONG X C , et al. Effects of Ag and RE contents on electrochemical performance of Pb-Ag-RE alloy anode[J]. Chin J Nonferrous Met, 2015, 25 (1): 111- 118.
WU M Y , LI M C . Influence of Ce on corrosion resistance of nanocrystalline zinc coating[J]. Corrosion and Protection, 2013, 23 (2): 129- 132.
13
LI J L , XIONG D S , HUANG Z J , et al. Effect of Ag and CeO2 on friction and wear properties of Ni-base composite at high temperature[J]. Wear, 2009, 267 (1): 576- 584.
14
ZHOU X W , SHEN Y F , JIN H M , et al. Microstructure and depositional mechanism of Ni-P coatings with nano-ceria particles by pulse electrodeposition[J]. Trans Nonferrous Met Soc China, 2012, 22 (22): 1981- 1988.
15
KULP E A , LIMMER S J , BOHANNAN E W , et al. Electrodeposition of nanometer-thick ceria films by oxidation of cerium (Ⅲ)-acetate[J]. Solid State Ionics, 2007, 178 (11/12): 749- 757.
16
QU N S , ZHU D , CHAN K C . Fabrication of Ni-CeO2 nanocomposite by electrodeposition[J]. Scripta Mater, 2006, 54 (7): 1421- 1425.
doi: 10.1016/j.scriptamat.2005.10.069
17
SEN R , BHATTACHARYA S , DAS S , et al. Effect of surfactant on the co-electrodeposition of the nano-sized ceria particle in the nickel matrix[J]. J Alloys Compd, 2010, 489 (2): 650- 658.
doi: 10.1016/j.jallcom.2009.09.142
18
SMITH C G , OKINAKA Y . High speed gold plating:anodic bath degradation and search for stable low polarization anodes[J]. J Electrochem Soc, 1983, 11 (130): 2149- 2157.
HE G P , ZHANG J , YAO R H . Preparation, structure and photolum inescence of Er3+ and Ce3+/Ce4+ doped β-BaB2O4 nanorods[J]. Acta Phys Chim Sin, 2010, 26 (3): 685- 690.
21
KUMAGAI N , SAMATA Y , KAWASHIMA A , et al. Anodic characteristics of amorphous nickel-value metal alloys containing small amounts of platinum group elements in 0.5 M NaCl[J]. J Appl Electrochem, 1987, 17 (2): 347- 356.
doi: 10.1007/BF01023301
22
SAVINELL R F , LⅡ R L Z , ADAMS J A , et al. Electrochemically active surface area voltammetric charge correlations for ruthenium and iridium dioxide electrodes[J]. Electrochem Soc, 1990, 137 (4): 489- 493.
23
RUETSCHI P . Cation-vacancy model for MnO2[J]. J Electrochem Soc, 1984, 131 (12): 2737- 2744.
doi: 10.1149/1.2115399
XIA X . Crystal structure, preparation and discharge performance for manganese dioxides and related manganese oxides(Ⅱ)[J]. Battery, 2005, 35 (1): 27- 30.
25
YEAGER E . Dioxygen electrocatalysis:mechanisms in relation to catalyst structure[J]. J Mol Catal, 1986, 38 (1/2): 5- 25.
ZHANG Y H , LI X H , WU X M , et al. Preparation and performance of Pt-Co/C catalyst for PEMFC[J]. Precious Metals, 2004, 25 (1): 19- 23.
27
OWEN M P , LAWRANCE G A , DONNE S W . An electrochemical quartz crystal microbalance study into the deposition of manganese dioxide[J]. Electrochimica Acta, 2007, 52 (14): 4630- 4639.
doi: 10.1016/j.electacta.2007.01.012