Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (10): 96-103    DOI: 10.11868/j.issn.1001-4381.2016.001329
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
激光熔覆再制造涂层应力超声无损评价
闫晓玲1, 曹勇2, 董世运2
1. 北京工商大学 材料与机械工程学院, 北京 102488;
2. 陆军装甲 兵学院 装备再制造技术国防科技重点实验室, 北京 100072
Stress Measurement of Laser Cladding Remanufacturing Coating with Ultrasonic Nondestructive Evaluation
YAN Xiao-ling1, CAO Yong2, DONG Shi-yun2
1. School of Materials Science and Mechanical Engineering, Beijing Technology and Business University, Beijing 102488, China;
2. National Key Laboratory for Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China
全文: PDF(2888 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 基于声弹理论研究激光熔覆再制造涂层应力超声无损评价方法。应用泰勒级数展开法对激光熔覆层中声弹公式进行合理简化,结合静载拉伸实验,标定熔覆层声弹系数。结果表明:随着拉伸应力的增加,瑞利波在Fe314激光熔覆层中的传播速度变化率以线性规律增加,拉伸应力大于495MPa时,瑞利波信号的传播速度不再以线性规律变化。结合超声传播理论及微观组织揭示声弹曲线变化规律及其对应力评价结果的影响机理。结果表明:各向异性熔覆层的非均匀变形是导致高应力阶段声弹曲线波动的主要原因,各向异性组织效应会影响应力检测结果的可靠性,熔覆层间声波的传递对检测结果的影响可以忽略。通过对声弹曲线进行拟合确定了各向异性组织效应影响因子。佐证实验结果表明,采用本研究提出的方法,有效降低了组织效应对检测结果的影响,提高了激光熔覆再制造涂层应力超声无损检测的可靠性(最大相对误差为4.4%)。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
闫晓玲
曹勇
董世运
关键词 瑞利波激光熔覆应力各向异性微观组织    
Abstract:Based on acoustoelastic theory, stress measurement of laser cladding coating with Rayleigh wave was investigated.The acoustoelastic formula for evaluation of stress in laser cladding coating was simplified by means of Taylor series expansion method.Combined with the static load tensile test, acoustoelastic coefficients were determined.The results show that the variation rate of Rayleigh wave signal velocity in Fe314 alloy coating increases linearly with the increase of stress.When tensile stress is greater than 495MPa, the variation rate of Rayleigh wave signal velocity does not change linearly any more.Based on the analysis of ultrasonic propagation theory and microstructure of laser cladding coating, the changing rule of acoustoelastic curve and its influence mechanism on stress measurement were analyzed, the inhomogeneous deformation of anisotropic laser cladding coating is the main cause of the "wave-type" fluctuation of acoustoelastic curve in high stress stage.Results show that anisotropic tissue effect can affect the result of stress measurement;the penetration in laser cladding layers can be ignored. By fitting the acoustoelastic curve, anisotropic tissue effect factor is determined.The experimental results show the maximum relative error in stress measurement is 4.4%, the method can realize the nondestructive evaluation of the stress in laser cladding coating.
Key wordsRayleigh wave    laser cladding    stress    anisotropy    microstructure
收稿日期: 2016-11-09      出版日期: 2018-10-17
中图分类号:  TB551  
  TB303  
通讯作者: 闫晓玲(1974-),女,博士,副教授,研究方向:超声无损检测,再制造工程及理论,联系地址:北京市房山区良乡高教园区北京工商大学材料与机械工程学院(102488),E-mail:yanxl@th.btbu.edu.cn     E-mail: yanxl@th.btbu.edu.cn
引用本文:   
闫晓玲, 曹勇, 董世运. 激光熔覆再制造涂层应力超声无损评价[J]. 材料工程, 2018, 46(10): 96-103.
YAN Xiao-ling, CAO Yong, DONG Shi-yun. Stress Measurement of Laser Cladding Remanufacturing Coating with Ultrasonic Nondestructive Evaluation. Journal of Materials Engineering, 2018, 46(10): 96-103.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.001329      或      http://jme.biam.ac.cn/CN/Y2018/V46/I10/96
[1] 封慧,李剑峰,孙杰. 曲轴轴颈损伤表面的激光熔覆再制造修复[J].中国激光, 2014,41(8):80-85. FENG H,LI J F,SUN J.Study on remanufacturing repair of damaged crank shaft journal surface by laser cladding[J].Chinese Journal of Lasers,2014,41(8):80-85.
[2] 王庆明,孙渊.残余应力测试技术的进展与动向[J].机电工程,2011,28(1):11-15. WANG Q M, SUN Y. Research development on the test methods of residual stress[J]. Journal of Mechanical & Electrical Engineering,2011,28(1):11-15.
[3] RICKERT T. Residual stress measurement by ESPI hole-drilling[J]. Procedia CIRP,2016,45:203-206.
[4] TANUMA K,MAN C S,CHEN Y.Dispersion of Rayleigh waves in weakly anisotropic media with vertically-inhomogeneous initial stress[J]. International Journal of Engineering Science,2015,92(7):63-66.
[5] LI H B, ZHANG P C, LI G, et al. Stress measurement for nonstoichiometric ceria films based on Raman spectroscopy[J]. Journal of Alloys and Compounds,2016,682:132-137.
[6] 李峻宏, 高建波, 李际周, 等. 中子衍射残余应力无损测量与谱仪研发[J]. 无损检测,2010,32(10):765-769. LI J H, GAO J B, LI J Z,et al. Nondestructive measurement of residual stress by neutron diffraction and the R&D of the diffractmeter[J]. Nondestructive Testing,2010,32(10):765-769.
[7] 张龙,曾凯,何晓聪,等. SUS304不锈钢板点焊接头超声成像及力学性能[J].材料工程, 2016,44(4):26-31. ZHANG L,ZENG K,HE X C,et al. Ultrasonic imaging and mechanical properties of spot welds joint on SUS304 stainless steel[J]. Journal of Materials Engineering,2016,44(4):26-31.
[8] KWASNIEWKI J, DOMINIK I, LALIK K, et al. Influence of acoustoelastic coefficient on wave time of flight in stress measurement in piezoelectric self-excited system[J]. Mechanical Systems and Signal Processing,2016,78:143-146.
[9] 丁辉.计算超声学[M].北京:科学出版社,2010:46-51. DING H. Computational ultrasonics[M]. Beijing:Science Press, 2010:46-51.
[10] JOHSON G C.Acoustoelastic theory for elastic-plastic materials[J].The Journal of the Acoustical Society of America, 1981, 70(2):591-595.
[11] ROKHLIN S I, WANG W. Double through-transmission bulk wave method for ultrasonic phase velocity measurement and determination of elastic constants of composite materials[J].The Journal of the Acoustical Society of America,1992,91(6):3303-3312.
[12] WALASZEK H, HOBLOS J, BOURSE G, et al.Effect of microstructure on ultrasonic measurements of residual stresses in welded joints[J].Materials Science Forum,2002,404/407:875-880.
[13] BURKOV S I, ZOLOTOVA O P, SOROKIN B P, et al. The analysis of the effect of homogeneous mechanical stress on the acoustic wave propagation in the "La3Ga5SiO14/fused silica" piezoelectric layered structure[J]. Ultrasonics, 2015, 55:104-112.
[14] DU H L,TURNER J A.Dependence of diffuse ultrasonic backscatter on residual stress in 1080 steel[J]. Ultrasonics,2016,67:65-69.
[15] LIU B, DONG S Y, XU B S, et al. Length of reference signal affects surface stress measurement of thin laser cladding Fe314 alloy coating[J]. International Journal of Minerals,Metallurgy and Materials, 2012,19(6):549-553.
[16] MOHABUTH M, KOTOUSOV A, NG C T. Effect of uniaxial stress on the propagation of higher-order Lamb wave modes[J]. International Journal of Non-Linear Mechanics,2016,86:104-111.
[17] PAMNANI R, SHARMA G K, MAHADEVAN S, et al. Residual stress studies on arc welding joints of naval steel (DMR-249A)[J]. Journal of Manufacturing Processes,2015,20:104-111.
[18] 闫晓玲, 董世运,徐滨士,等. 超声声表面波检测信号时差的倒频谱分析[J].振动与冲击,2013,32(12):159-162. YAN X L,DONG S Y, XU B S,et al. Cepstrum analysis method for surface acoustic wave signal time delay estimation[J].Journal of Vibration and Shock,2013,32(12):159-162.
[19] 陈越超,周晓军,杨辰龙,等. 厚截面复合材料局域孔隙超声检测方法[J].农业机械学报,2015,46(6):372-378. CHEN Y C, ZHOU X J, YANG C L, et al. Study of ultrasonic testing method for localized void defect identification in thick section composites[J]. Transactions of the Chinese Society for Agricultural Machinery,2015,46(6):372-378.
[20] TORABIAN N,FAVIER V,ZIAEI-RAD S,et al.Thermal response of DP600 dual-phase steel under ultrasonic fatigue loading[J]. Materials Science and Engineering:A,2016,677:97-100.
[21] DEMIRLI R,SANⅡE J.Asymmetric Gaussian chirplet model and parameter estimation for generalized echo representation[J].Journal of the Franklin Institute,2014,351(2):907-921.
[1] 贾东瑞, 王越, 刘正, 毛萍莉, 王峰, 王志. Y含量对MgZn9YxZr0.5合金热裂敏感性的影响[J]. 材料工程, 2019, 47(7): 126-133.
[2] 周强, 程军, 于振涛, 崔文芳. 一种新型近β型Ti-5.5Mo-6V-7Cr-4Al-2Sn-1Fe合金热变形行为[J]. 材料工程, 2019, 47(6): 121-128.
[3] 任书杰, 罗飞, 田野, 刘大博, 王克鲁, 鲁世强. A100超高强度钢的流变应力曲线修正与唯象本构关系[J]. 材料工程, 2019, 47(6): 144-151.
[4] 闫钊鸣, 张治民, 杜玥, 张冠世, 任璐英. 均匀化处理对Mg-13Gd-3.5Y-2Zn-0.5Zr镁合金组织和力学性能的影响[J]. 材料工程, 2019, 47(5): 93-99.
[5] 欧阳佩旋, 弭光宝, 李培杰, 何良菊, 曹京霞, 黄旭. NiCrAl/YSZ/NiCrAl-B.e复合涂层对α+β型高温钛合金燃烧产物的影响[J]. 材料工程, 2019, 47(5): 43-52.
[6] 薛子明, 雷卫宁, 王云强, 钱海峰, 李奇林. 超临界条件下脉冲占空比对石墨烯复合镀层微观结构和性能的影响[J]. 材料工程, 2019, 47(5): 53-62.
[7] 王勇刚, 刘和剑, 回丽, 职山杰, 刘海青. 激光熔覆原位自生碳化物增强自润滑耐磨复合涂层的高温摩擦学性能[J]. 材料工程, 2019, 47(5): 72-78.
[8] 陈林, 陈文静, 黄强, 熊中. 超声振动对EA4T钢激光熔覆质量和性能的影响[J]. 材料工程, 2019, 47(5): 79-85.
[9] 唐文珅, 杨新岐, 李胜利, 李会军. 焊接参数对铁素体不锈钢搅拌摩擦焊接头组织及性能的影响[J]. 材料工程, 2019, 47(5): 115-121.
[10] 罗忠兵, 张嘉宁, 金士杰, 林莉. 定向凝固镍基合金DZ444声学特性的各向异性[J]. 材料工程, 2019, 47(4): 120-126.
[11] 何宗倍, 张瑞谦, 付道贵, 李鸣, 陈招科, 邱邵宇. 不同界面SiC纤维束复合材料的拉伸力学行为[J]. 材料工程, 2019, 47(4): 25-31.
[12] 张航, 路媛媛, 王涛, 鲁亚冉, 刘德健. 激光熔覆WC/H13-Inconel625复合材料的冲击韧性与磨损性能[J]. 材料工程, 2019, 47(4): 127-134.
[13] 黄利, 黄光杰, 吴晓东, 曹玲飞, 李佳. 预处理工艺对双辊铸轧3003铝合金再结晶行为的影响[J]. 材料工程, 2019, 47(4): 135-142.
[14] 周仲炎, 庄宿国, 杨霞辉, 王勉, 罗迎社, 刘煜, 刘秀波. Ti6Al4V合金激光原位合成自润滑复合涂层高温摩擦学性能[J]. 材料工程, 2019, 47(3): 101-108.
[15] 蒋少松, 杨天豪, 孙宏宇, 何玉石, 卢振, 王瑞卓. 超声波振动对钛箔拉伸性能及位错分布的影响[J]. 材料工程, 2019, 47(2): 84-89.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn