Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (10): 96-103    DOI: 10.11868/j.issn.1001-4381.2016.001329
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
激光熔覆再制造涂层应力超声无损评价
闫晓玲1, 曹勇2, 董世运2
1. 北京工商大学 材料与机械工程学院, 北京 102488;
2. 陆军装甲 兵学院 装备再制造技术国防科技重点实验室, 北京 100072
Stress Measurement of Laser Cladding Remanufacturing Coating with Ultrasonic Nondestructive Evaluation
YAN Xiao-ling1, CAO Yong2, DONG Shi-yun2
1. School of Materials Science and Mechanical Engineering, Beijing Technology and Business University, Beijing 102488, China;
2. National Key Laboratory for Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China
全文: PDF(2888 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 基于声弹理论研究激光熔覆再制造涂层应力超声无损评价方法。应用泰勒级数展开法对激光熔覆层中声弹公式进行合理简化,结合静载拉伸实验,标定熔覆层声弹系数。结果表明:随着拉伸应力的增加,瑞利波在Fe314激光熔覆层中的传播速度变化率以线性规律增加,拉伸应力大于495MPa时,瑞利波信号的传播速度不再以线性规律变化。结合超声传播理论及微观组织揭示声弹曲线变化规律及其对应力评价结果的影响机理。结果表明:各向异性熔覆层的非均匀变形是导致高应力阶段声弹曲线波动的主要原因,各向异性组织效应会影响应力检测结果的可靠性,熔覆层间声波的传递对检测结果的影响可以忽略。通过对声弹曲线进行拟合确定了各向异性组织效应影响因子。佐证实验结果表明,采用本研究提出的方法,有效降低了组织效应对检测结果的影响,提高了激光熔覆再制造涂层应力超声无损检测的可靠性(最大相对误差为4.4%)。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
闫晓玲
曹勇
董世运
关键词 瑞利波激光熔覆应力各向异性微观组织    
Abstract:Based on acoustoelastic theory, stress measurement of laser cladding coating with Rayleigh wave was investigated.The acoustoelastic formula for evaluation of stress in laser cladding coating was simplified by means of Taylor series expansion method.Combined with the static load tensile test, acoustoelastic coefficients were determined.The results show that the variation rate of Rayleigh wave signal velocity in Fe314 alloy coating increases linearly with the increase of stress.When tensile stress is greater than 495MPa, the variation rate of Rayleigh wave signal velocity does not change linearly any more.Based on the analysis of ultrasonic propagation theory and microstructure of laser cladding coating, the changing rule of acoustoelastic curve and its influence mechanism on stress measurement were analyzed, the inhomogeneous deformation of anisotropic laser cladding coating is the main cause of the "wave-type" fluctuation of acoustoelastic curve in high stress stage.Results show that anisotropic tissue effect can affect the result of stress measurement;the penetration in laser cladding layers can be ignored. By fitting the acoustoelastic curve, anisotropic tissue effect factor is determined.The experimental results show the maximum relative error in stress measurement is 4.4%, the method can realize the nondestructive evaluation of the stress in laser cladding coating.
Key wordsRayleigh wave    laser cladding    stress    anisotropy    microstructure
收稿日期: 2016-11-09      出版日期: 2018-10-17
中图分类号:  TB551  
  TB303  
通讯作者: 闫晓玲(1974-),女,博士,副教授,研究方向:超声无损检测,再制造工程及理论,联系地址:北京市房山区良乡高教园区北京工商大学材料与机械工程学院(102488),E-mail:yanxl@th.btbu.edu.cn     E-mail: yanxl@th.btbu.edu.cn
引用本文:   
闫晓玲, 曹勇, 董世运. 激光熔覆再制造涂层应力超声无损评价[J]. 材料工程, 2018, 46(10): 96-103.
YAN Xiao-ling, CAO Yong, DONG Shi-yun. Stress Measurement of Laser Cladding Remanufacturing Coating with Ultrasonic Nondestructive Evaluation. Journal of Materials Engineering, 2018, 46(10): 96-103.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.001329      或      http://jme.biam.ac.cn/CN/Y2018/V46/I10/96
[1] 封慧,李剑峰,孙杰. 曲轴轴颈损伤表面的激光熔覆再制造修复[J].中国激光, 2014,41(8):80-85. FENG H,LI J F,SUN J.Study on remanufacturing repair of damaged crank shaft journal surface by laser cladding[J].Chinese Journal of Lasers,2014,41(8):80-85.
[2] 王庆明,孙渊.残余应力测试技术的进展与动向[J].机电工程,2011,28(1):11-15. WANG Q M, SUN Y. Research development on the test methods of residual stress[J]. Journal of Mechanical & Electrical Engineering,2011,28(1):11-15.
[3] RICKERT T. Residual stress measurement by ESPI hole-drilling[J]. Procedia CIRP,2016,45:203-206.
[4] TANUMA K,MAN C S,CHEN Y.Dispersion of Rayleigh waves in weakly anisotropic media with vertically-inhomogeneous initial stress[J]. International Journal of Engineering Science,2015,92(7):63-66.
[5] LI H B, ZHANG P C, LI G, et al. Stress measurement for nonstoichiometric ceria films based on Raman spectroscopy[J]. Journal of Alloys and Compounds,2016,682:132-137.
[6] 李峻宏, 高建波, 李际周, 等. 中子衍射残余应力无损测量与谱仪研发[J]. 无损检测,2010,32(10):765-769. LI J H, GAO J B, LI J Z,et al. Nondestructive measurement of residual stress by neutron diffraction and the R&D of the diffractmeter[J]. Nondestructive Testing,2010,32(10):765-769.
[7] 张龙,曾凯,何晓聪,等. SUS304不锈钢板点焊接头超声成像及力学性能[J].材料工程, 2016,44(4):26-31. ZHANG L,ZENG K,HE X C,et al. Ultrasonic imaging and mechanical properties of spot welds joint on SUS304 stainless steel[J]. Journal of Materials Engineering,2016,44(4):26-31.
[8] KWASNIEWKI J, DOMINIK I, LALIK K, et al. Influence of acoustoelastic coefficient on wave time of flight in stress measurement in piezoelectric self-excited system[J]. Mechanical Systems and Signal Processing,2016,78:143-146.
[9] 丁辉.计算超声学[M].北京:科学出版社,2010:46-51. DING H. Computational ultrasonics[M]. Beijing:Science Press, 2010:46-51.
[10] JOHSON G C.Acoustoelastic theory for elastic-plastic materials[J].The Journal of the Acoustical Society of America, 1981, 70(2):591-595.
[11] ROKHLIN S I, WANG W. Double through-transmission bulk wave method for ultrasonic phase velocity measurement and determination of elastic constants of composite materials[J].The Journal of the Acoustical Society of America,1992,91(6):3303-3312.
[12] WALASZEK H, HOBLOS J, BOURSE G, et al.Effect of microstructure on ultrasonic measurements of residual stresses in welded joints[J].Materials Science Forum,2002,404/407:875-880.
[13] BURKOV S I, ZOLOTOVA O P, SOROKIN B P, et al. The analysis of the effect of homogeneous mechanical stress on the acoustic wave propagation in the "La3Ga5SiO14/fused silica" piezoelectric layered structure[J]. Ultrasonics, 2015, 55:104-112.
[14] DU H L,TURNER J A.Dependence of diffuse ultrasonic backscatter on residual stress in 1080 steel[J]. Ultrasonics,2016,67:65-69.
[15] LIU B, DONG S Y, XU B S, et al. Length of reference signal affects surface stress measurement of thin laser cladding Fe314 alloy coating[J]. International Journal of Minerals,Metallurgy and Materials, 2012,19(6):549-553.
[16] MOHABUTH M, KOTOUSOV A, NG C T. Effect of uniaxial stress on the propagation of higher-order Lamb wave modes[J]. International Journal of Non-Linear Mechanics,2016,86:104-111.
[17] PAMNANI R, SHARMA G K, MAHADEVAN S, et al. Residual stress studies on arc welding joints of naval steel (DMR-249A)[J]. Journal of Manufacturing Processes,2015,20:104-111.
[18] 闫晓玲, 董世运,徐滨士,等. 超声声表面波检测信号时差的倒频谱分析[J].振动与冲击,2013,32(12):159-162. YAN X L,DONG S Y, XU B S,et al. Cepstrum analysis method for surface acoustic wave signal time delay estimation[J].Journal of Vibration and Shock,2013,32(12):159-162.
[19] 陈越超,周晓军,杨辰龙,等. 厚截面复合材料局域孔隙超声检测方法[J].农业机械学报,2015,46(6):372-378. CHEN Y C, ZHOU X J, YANG C L, et al. Study of ultrasonic testing method for localized void defect identification in thick section composites[J]. Transactions of the Chinese Society for Agricultural Machinery,2015,46(6):372-378.
[20] TORABIAN N,FAVIER V,ZIAEI-RAD S,et al.Thermal response of DP600 dual-phase steel under ultrasonic fatigue loading[J]. Materials Science and Engineering:A,2016,677:97-100.
[21] DEMIRLI R,SANⅡE J.Asymmetric Gaussian chirplet model and parameter estimation for generalized echo representation[J].Journal of the Franklin Institute,2014,351(2):907-921.
[1] 曲敬龙, 易出山, 陈竞炜, 史玉亭, 毕中南, 杜金辉. GH4720Li合金中析出相的研究进展[J]. 材料工程, 2020, 48(8): 73-83.
[2] 段晓鸽, 江海涛, 米振莉, 王丽丽, 李萧. 轧制方式对6016铝合金薄板组织和塑性各向异性的影响[J]. 材料工程, 2020, 48(8): 134-141.
[3] 王彦菊, 姜嘉赢, 沙爱学, 李兴无. 新型高温合金材料建模及涡轮盘成形工艺模拟[J]. 材料工程, 2020, 48(7): 127-132.
[4] 吴红亚, 杨云, 张光磊, 白洋, 周济. 双曲超材料及其传感器研究进展[J]. 材料工程, 2020, 48(6): 34-42.
[5] 赵强, 祝文卉, 邵天巍, 帅焱林, 刘佳涛, 王冉, 张利, 梁晓波. Ti-22Al-25Nb合金惯性摩擦焊接头显微组织与力学性能[J]. 材料工程, 2020, 48(6): 140-147.
[6] 赵慧生, 陈国清, 盖鹏涛, 李志强, 周文龙, 付雪松. 拉-拉疲劳载荷下钛合金湿喷丸的残余应力松弛及再次喷丸工艺[J]. 材料工程, 2020, 48(5): 136-143.
[7] 刘也川, 张松, 谭俊哲, 关锰, 陶邵佳, 张春华. 机械滚压对A473M钢疲劳性能的影响[J]. 材料工程, 2020, 48(3): 163-169.
[8] 赵泽军, 卢学鹏, 刘帅, 息剑峰, 李宝河. MgO/Pd底层对CoSiB/Pd多层膜垂直磁各向异性及热稳定性的影响[J]. 材料工程, 2020, 48(2): 65-70.
[9] 杨斌, 李云龙, 王世杰, 聂瑞, 王照智. 拉应力下碳纳米管增强高分子基复合材料的应力分布[J]. 材料工程, 2020, 48(2): 79-86.
[10] 殷小春, 尹有华, 成迪, 杨智韬. 正应力支配下混合顺序对PA6/HDPE/CNTs体系结构及性能的影响[J]. 材料工程, 2020, 48(2): 87-93.
[11] 葛勇, 王博伦, 相宁, 王韬, 孙琦伟, 颜悦. 二次注射成型光学制件厚度截面的残余应力分析[J]. 材料工程, 2020, 48(10): 88-95.
[12] 林盼盼, 马典, 李昊岳, 王子鸣, 何鹏, 林铁松, 龙伟民. AlNP/Al复合材料与6061Al低温连接组织演变机理及力学性能[J]. 材料工程, 2020, 48(10): 133-140.
[13] 丰涵, 王宝顺, 吴晓涵, 王曼, 佴启亮, 宋志刚. 022Cr25Ni7Mo4N双相不锈钢等温处理中的组织演变[J]. 材料工程, 2020, 48(1): 70-76.
[14] 代晓腾, 马鸣龙, 张奎, 李永军, 袁家伟, 刘小稻, 王胜青. Ce对铸态Mg-6Zn合金组织与导热性能的影响[J]. 材料工程, 2020, 48(1): 92-97.
[15] 陈航, 弭光宝, 李培杰, 王旭东, 黄旭, 曹春晓. 氧化石墨烯对600℃高温钛合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(9): 38-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn