Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (4): 111-119    DOI: 10.11868/j.issn.1001-4381.2016.001370
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
长玻纤增强复合材料注塑成型构件强度分析
丁智平1, 黄达勇1, 荣继刚2, 黄友剑2, 曾家兴1
1. 湖南工业大学 机械工程学院, 湖南 株洲 412007;
2. 株洲时代新材料科技股份有限公司, 湖南 株洲 412007
Strength Analysis of Long Glass Fiber Reinforced Composite Injection Molding Components
DING Zhi-ping1, HUANG Da-yong1, RONG Ji-gang2, HUANG You-jian2, ZENG Jia-xing1
1. School of Mechanical Engineering, Hunan University of Technology, Zhuzhou 412007, Hunan, China;
2. Zhuzhou Times New Material Technology Co., Ltd., Zhuzhou 412007, Hunan, China
全文: PDF(6382 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 基于广义牛顿流体本构方程,采用ARD-RSC纤维取向模型,考虑纤维间相互作用,仿真预测长玻纤增强复合材料注塑构件的纤维取向分布;应用复合材料细观力学Eshelby夹杂理论和Mean Field均匀化方法,建立长玻纤增强复合材料均质化RVE模型;综合运用复合材料细观建模、离散RVE模型场、注塑成型和结构有限元分析技术,提出了长玻纤增强复合材料注塑构件强度分析方法。对推力杆注塑构件进行强度分析,显示仿真危险位置与实际破坏位置较为吻合。在此基础上对推力杆进行结构改进,结果表明杆体中间部分在拉伸载荷下的最大主应力降低了57.18%,在压缩载荷下的最大主应力降低了71.25%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
丁智平
黄达勇
荣继刚
黄友剑
曾家兴
关键词 长玻纤注塑构件均质化各向异性纤维取向分布结构改进    
Abstract:Based on the generalized Newtonian fluid constitutive equation, using ARD-RSC fiber orientation model, numerical simulation was used to predict fiber orientation distribution of the long-glass fiber reinforced composite injection molding components by considering the interaction between fibers. The fiber homogenized RVE model of long glass fiber reinforced composites was established through the composite material micromechanics Eshelby inclusion theory and Mean Field homogenization method. By using composite meso-scale modeling, discrete RVE model field, injection molding and structural finite element analysis techniques, the strength of long glass fiber reinforced composites analytical method was proposed. The strength analysis of the thrust-rod injection molded part shows that the simulated dangerous position is in good agreement with the actual damage location. On the basis, the structure of thrust rod is improved, the results show that the maximum principal stress of the rod is reduced by 57.18% under the tensile load and 71.25% under the compressive load.
Key wordslong glass fiber    injection molding component    homogenization    anisotropy    fiber orientation distribution    structure improvement
收稿日期: 2016-11-18      出版日期: 2018-04-14
中图分类号:  TB332  
通讯作者: 丁智平(1956-),男,教授,博士,硕士生导师,主要从事机械强度方向的研究,联系地址:湖南株洲天元区珠江南路515号学林雅苑1栋606室(412007),E-mail:dzp0733@sohu.com     E-mail: dzp0733@sohu.com
引用本文:   
丁智平, 黄达勇, 荣继刚, 黄友剑, 曾家兴. 长玻纤增强复合材料注塑成型构件强度分析[J]. 材料工程, 2018, 46(4): 111-119.
DING Zhi-ping, HUANG Da-yong, RONG Ji-gang, HUANG You-jian, ZENG Jia-xing. Strength Analysis of Long Glass Fiber Reinforced Composite Injection Molding Components. Journal of Materials Engineering, 2018, 46(4): 111-119.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.001370      或      http://jme.biam.ac.cn/CN/Y2018/V46/I4/111
[1] BAKSHI S R,KESHRI A K,AGARWAL A. A comparison of mechanical and wear properties of plasma sprayed carbon nanotube reinforced aluminum composites at nano and macro scale[J]. Materials Science and Engineering:A,2011,528:3375-3384.
[2] GUZ I A,RODGER A A,GUZ A N,et al. Developing the mecha-nical models for nanomaterials[J]. Composites Part A:Applied Science and Manufacturing,2007,38(4):1234-1250.
[3] ZHANG L J,WEBSTER T J. Nanotechnology and nanomaterials:promises for improved tissue regeneration[J]. Nanotoday, 2009,4(1):66-80.
[4] STONE V,NOWACK B,BAUN A,et al. Nanomaterials for environmental studies:classification, reference material issues, and strategies for physico-chemical characterisation[J]. Science of the Total Environment,2010,408(7):1745-1754.
[5] LI X D,BHUSHAN B,TAKASHIMA K,et al. Mechanical characterization of micro/nanoscale structures for MEMS/NEMS applications using nanoindentation techniques[J]. Ultramicroscopy,2003,97:481-494.
[6] TAMBE N S,BHUSHAN B. Scale dependence of micro/nano-friction and adhesion of MEMS/NEMS materials, coatings and lubricants[J]. Nanotechnology,2004,15(11):1561-1570.
[7] SUMANT A V,AUCIELLO O,CARPICH RW,et al. Ultrananocrystalline and nanocrystalline diamond thin films for mems/nems applications[J]. MRS Bulletin,2010,35(4):281-288.
[8] ZHU P Z,HU Y Z,MA T B, et al. Study of AFM-based nanometric cutting process using molecular dynamics[J]. Applied Surface Science,2010,256:7160-7165.
[9] ZHOU S X,WU L M,SUN J,et al. The change of the properties of acrylic-based polyurethane via addition of nano-silica[J]. Progress in Organic Coatings,2002,45(1):33-42.
[10] LLIE N,HICKEL R. Macro-, micro-and nano-mechanical investigations on silorane and methacrylate-based composites[J]. Dental Materials,2009,25(6):810-819.
[11] KELLY A. Composite materials after seventy years[J]. Journal of Materials Science,2006,41:905-912.
[12] TAHA M A. Practicalization of cast metal matrix composites (MMCCs)[J]. Materials & Design,2001,22:431-441.
[13] SCHALLER R. Metal matrix composites, a smart choice for high damping materials[J]. Journal of Alloys and Compounds,2003,355:131-135.
[14] CHO J,JOSHI M S,SUN C T. Effect of inclusion size on mechanical properties of polymeric composites with micro and nano particles[J]. Composites Science and Technology,2006,66:1941-1952.
[15] PELLICER E,VAREA A,PANE S,et al. Nanocrystalline electroplated Cu-Ni:metallic thin films with enhanced mechanical properties and tunable magnetic behavior[J]. Advanced Functional Materials,2010,20:983-991.
[16] ZHU X Y,LIU X J,ZONG R L,et al. Microstructure and mechanical properties of nanoscale Cu/Ni multilayers[J]. Materials Science and Engineering:A,2010,527:1243-1248.
[17] 于超,任会兰,宁建国.钨合金力学性能表征分子动力学模拟[J].材料工程,2014(10):82-89. YU C,REN H L,NING J G. Characterizations of tungsten alloy mechanical property by molecular dynamic simulations[J]. Journal of Materials Engineering,2014(10):82-89.
[18] PEI Q X,LU C,LEE H P,et al. Study of materials deformation in nanometric cutting by large-scale molecular dynamics simulations[J]. Nanoscale Res Lett,2009,4:444-451.
[19] TONG Z,LIANG Y C,JIANG X Q,et al. An atomistic investigation on the mechanism of machining nanostructures when using single tip and multi-tip diamond tools[J]. Applied Surface Science,2009,290:458-465.
[20] MUSAZADAH M H,DEHGHANI K. Molecular dynamic simulation of crack propagation in nanocrystalline Ni containing different shapes and types of second phases[J]. Computational Materials Science,2011,50:3075-3079.
[21] CHEN S D,ZHOU Y K,SOH A K. Molecular dynamics simulations of mechanical properties for Cu(001)/Ni(001) twist boun-daries[J]. Computational Materials Science,2012,61:239-242.
[22] RAFⅡ T H,SHODJA H M,DARABI M,et al. Molecular dynamics simulation of crack propagation in fcc materials containing clusters of impurities[J]. Mechanics of Materials,2006,38:243-252.
[23] CHELLALI M R,BALOGH Z,BOUCHIKHAOUI H,et al. Triple junction transport and the impact of grain boundary width in nanocrystalline[J]. Nano Letters,2012,12(7):3448-3454.
[24] 白清顺,童振,梁迎春,等. 单晶Cu纳米杆拉伸力学特性的尺寸依赖性模拟[J]. 金属学报,2009,46(10):1173-1180. BAI Q S,TONG Z,LIANG Y C,et al. Simulation of scale dependency on tensile mechanical properties of single crystal copper nano-rod[J].Acta Metallurgica Sinica,2009,46(10):1173-1180.
[25] 成聪,陈尚达,吴勇芝,等. 不同应变率下纳米多晶Cu/Ni薄膜变形行为的分子动力学模拟[J]. 材料工程,2015,43(3):60-66. CHENG C, CHEN S D, WU Y Z, et al. Molecular dynamics simulations of deformation behaviors for nanocrystalline Cu/Ni films under different strain rates[J]. Journal of Materials Engineering,2015,43(3):60-66.
[26] GUO Y B,LIANG Y C,CHEN M J,et al. Molecular dynamics simulations of thermal effects in nanometric cutting process[J]. Science China Technological Sciences,2010,531:870-874.
[27] FOILES S M,BASKES M I,DAW M S. Embedded-atom method functions for the fcc metals Cu,Ag,Au,Ni,Pd,Pt,and their alloys[J]. Physical Review B,1986,33:7983-7991.
[28] DAW M S,FOILES S M,BASKES M I. The embedded-atom method:a review of theory and applications[J]. Materials Science Reports,1993,9:251-310.
[29] HONEYCUTT J D,ANDERSEN H C. Molecular dynamics study of melting and freezing of small Lennard-Jones clusters[J]. Journal of Chemical Physics,1987,91:4950-4963.
[1] 罗忠兵, 张嘉宁, 金士杰, 林莉. 定向凝固镍基合金DZ444声学特性的各向异性[J]. 材料工程, 2019, 47(4): 120-126.
[2] 童邵辉, 李东, 邓增辉, 方虎. 电子束快速成形TC4合金的组织与断裂性能[J]. 材料工程, 2019, 47(1): 125-130.
[3] 闫晓玲, 曹勇, 董世运. 激光熔覆再制造涂层应力超声无损评价[J]. 材料工程, 2018, 46(10): 96-103.
[4] 张显峰, 陆政, 高文理, 曹亚雷, 冯朝辉. 2A66铝锂合金板材各向异性研究[J]. 材料工程, 2017, 45(7): 7-12.
[5] 钟振前, 田志凌, 杨春. 马氏体不锈钢的微观组织各向异性对微区应力和氢分布的影响[J]. 材料工程, 2016, 44(10): 80-87.
[6] 徐娜, 沙正骁, 史亦韦. 超声相控阵延迟时间的声速校正及在复合材料中的检测[J]. 材料工程, 2015, 43(9): 74-79.
[7] 俱海浪, 李宝河, 刘帅, 于广华. Ta/Pt双底层Co/Ni多层膜的反常霍尔效应[J]. 材料工程, 2015, 43(11): 19-23.
[8] 孙涛, 梁晋, 郭翔, 李磊刚, 任茂栋. 基于DIC的预应变下铜/铝复层板各向异性性能检测与研究[J]. 材料工程, 2014, 0(5): 78-85.
[9] 左孔成, 蔡振兵, 宋川, 彭金方, 莫继良, 沈火明, 朱旻昊. 纤维取向对炭纤维织物复合材料扭动微动摩擦学性能的影响[J]. 材料工程, 2014, 0(4): 79-84.
[10] 张阳, 臧顺来, 郭翔, 梁晋, 郭成. 基于数字散斑应变测量法的薄板各向异性力学性能研究[J]. 材料工程, 2012, 0(4): 6-11.
[11] 王学华, 陈归, 蔡鹏, 付萍, 李承勇, 杨亮, 曹宏. 交流电化学沉积FeCo合金纳米线阵列及其磁性能研究[J]. 材料工程, 2012, 0(3): 79-82.
[12] 郝丽梅. 相场法模拟流动下非等温多晶粒枝晶生长形貌研究[J]. 材料工程, 2010, 0(6): 1-6,11.
[13] 李静媛, 陈雨来, 陈长江, 曹亮. 对高Al镁合金挤压变形影响因素的研究[J]. 材料工程, 2009, 0(8): 71-75.
[14] 赵乃仁, 王志辉, 李金国, 金涛, 孙晓峰, 杨洪才, 胡壮麒. 一种镍基单晶高温合金的各向异性研究[J]. 材料工程, 2008, 0(2): 58-61.
[15] 李嘉荣, 史振学, 袁海龙, 刘世忠, 赵金乾, 韩梅, 刘维维. 单晶高温合金DD6拉伸性能各向异性[J]. 材料工程, 2008, 0(12): 6-10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn