Please wait a minute...
材料工程  2018, Vol. 46 Issue (5): 92-98    DOI: 10.11868/j.issn.1001-4381.2016.001373
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
罗晓民, 魏梦媛, 曹敏
陕西科技大学 轻工科学与工程学院, 西安 710021
Preparation of Superhydrophobic Cu Mesh with Corrosion Resistance and Applications in Oil-water Separation
LUO Xiao-min, WEI Meng-yuan, CAO Min
College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
全文: PDF(3557 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 针对目前超疏水材料耐腐蚀差的问题,制备一种耐腐蚀的超疏水铜网,并应用于油水混合物的分离。将十八胺修饰的多壁碳纳米管与有机硅改性的水性聚氨酯相结合,喷涂到铜网制备了具有鸟巢状结构的铜基超疏水表面。结果表明,该表面呈现对水高的接触角162°和对油极低接触角0°。另外,可对石油醚/水、四氯化碳/水、甲苯/水、己烷/水、煤油/水等油水混合物高效分离,分离效率均大于93.79%,且具有良好的可循环使用性。耐腐蚀性测试结果表明,该超疏水表面分别在1 mol/L的NaOH,HCl,NaCl溶液中浸泡24h后,仍可保持超疏水特性,具有优异的耐腐蚀性能。
E-mail Alert
关键词 超疏水铜网耐腐蚀油水分离碳纳米管水性聚氨酯    
Abstract:In order to solve the existing problem of the poor corrosion resistance of the superhydrophobic materials, a novel type of copper mesh-based superhydrophobic materials with outstanding corrosion resistance was prepared and then was applied to the oil/water separation. The octadecylamine modified multi-walled carbon nanotubes was combined with the aminoethylaminopropyl polydimethylsiloxane(AEAPS) modified WPU and one-step spray method was adopted to prepare the copper mesh-based superhydrophobic surfaces with nest-like structure. The as-prepared mesh shows both superhydrophobic and superoleophilic properties simultaneously with a high water contact of 162° and an oil contact angle of 0°. Thus, they can be used to separate a series of oil/water mixtures, such as kerosene, toluene, tetrachloromethane, petroleum and hexane with separation efficiency above 93.79% and stable recyclability. In addition, the as-prepared mesh can maintain its superhydrophobic property after soaking in corrosive solutions (1mol/L NaOH, HCl, NaCl) for 24h.
Key wordssuperhydrophobic copper mesh    corrosion resistance    oil/water separation    carbon nanotubes    waterborne polyurethane
收稿日期: 2016-11-19      出版日期: 2018-05-16
中图分类号:  TB37  
通讯作者: 罗晓民(1965-),女,教授,硕士,主要从事超细纤维合成革以及水性聚氨酯的研究与应用,联系地址:陕西省西安市未央区陕西科技大学轻工科学与工程学院(710021),     E-mail:
罗晓民, 魏梦媛, 曹敏. 耐腐蚀超疏水铜网的制备及其在油水分离中的应用[J]. 材料工程, 2018, 46(5): 92-98.
LUO Xiao-min, WEI Meng-yuan, CAO Min. Preparation of Superhydrophobic Cu Mesh with Corrosion Resistance and Applications in Oil-water Separation. Journal of Materials Engineering, 2018, 46(5): 92-98.
链接本文:      或
[1] SHANNON M A,BOHN P W,ELIMELECH M,et al.Science and technology for water purification in the coming decades[J].Nature,2008,452(7185):301-310.
[2] WANG B,LIANG W,GUO Z,et al.Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation:a new strategy beyond nature[J].Chemical Society Reviews,2015,44(1):336-61.
[3] PALUMBO F,MUNDO R D,CAPPELLUTI D,et al.Superhydrophobic and superhydrophilic polycarbonate by tailoring chemistry and nano-texture with plasma processing[J].Plasma Processes and Polymers,2011,8(2):118-126.
[4] 汪怀远,王恩群,孟旸,等.超双疏耐磨PPS基涂层的制备与性能[J].材料工程,2017,45(1):38-42.WANG H Y,WANG E Q,MENG Y,et al.Preparation and properties of superamphiphobic wear-resistance PPS-based coating[J].Journal of Materials Engineering,2017,45(1):38-42.
[5] LI J,YAN L,LI H,et al.A facile one-step spray-coating process for the fabrication of a superhydrophobic attapulgite coated mesh used in oil/water separation[J].RSC Adv,2015,5:53802-53808.
[6] LI J,KANG R,TANG X,et al.Superhydrophobic meshes that can repel hot water and strong corrosive liquids used for efficient gravity-driven oil/water separation[J].Nanoscale,2016,8(14):7638-7645.
[7] TAO M,XUE L,LIU F,et al.An intelligent superwetting PVDF membrane showing switchable transport performance for oil/water separation[J].Advanced Materials,2014,26(18):2943-2948.
[8] GONDAL M A,SADULLAH M S,DASTAGEER M A,et al.Study of factors governing oil-water separation process using TiO2 films prepared by spray deposition of nanoparticle dispersions[J].ACS Applied Materials&Interfaces,2014,6(16):13422-13429.
[9] FANG Y,LI X,LI F,et al.Self-assembly of cobalt-centered metal organic framework and multiwalled carbon nanotubes hybrids as a highly active and corrosion-resistant bifunctional oxygen catalyst[J].Journal of Power Sources,2016,326:50-59.
[10] ASHRAF A,SALIH H,NAM S W,et al.Robust carbon nanotube membranes directly grown on Hastelloy substrates and their potential application for membrane distillation[J].Carbon,2016,106:243-251.
[11] XU D,LIU H,YANG L,et al.Fabrication of superhydrophobic surfaces with non-aligned alkyl-modified multi-wall carbon nanotubes[J].Carbon,2006,44(15):3226-3231.
[12] DENG J,CAO J,LI J,et al.Mechanical and surface properties of polyurethane/fluorinated multi-walled carbon nanotubes composites[J].Journal of Applied Polymer Science,2008,108(3):2023-2028.
[13] TANG Q,SUN J,YU S,et al.Improving thermal conductivity and decreasing supercooling of paraffin phase change materials by n-octadecylamine-functionalized multi-walled carbon nanotubes[J].RSC Advances,2014,4:36584-36590.
[14] WANG X,HU H,YE Q,et al.Superamphiphobic coatings with coralline-like structure enabled by one-step spray of polyurethane/carbon nanotube composites[J].Journal of Materials Chemistry,2012,22(19):9624-9631.
[15] HONG C,FAN Q,CHEN D,et al.Synthesis and properties of polyurethane modified with an aminoethylaminopropyl-substituted polydimethylsiloxane Ⅱ waterborne polyurethanes[J].Journal of Applied Polymer Science,2001,79(2):295-301.
[16] XU C,CAI Z,XING J,et al.Synthesis of polypropylene carbonate polyol-based waterborne polyurethane modified with polysiloxane and its film properties[J].Fibers and Polymers,2014,15(4):665-671.
[17] WENZEL R N.Resistance of solid surfaces to wetting by water[J].Industrial&Engineering Chemistry,1936,28(8):988-994.
[18] CASSIE A B D,BAXTER S.Wettability of porous surfaces[J].Transactions of the Faraday Society,1944,40:546-551.
[1] 王玉洁, 张鹏, 王选, 杜云慧, 王胜林, 张伟一, 鹿红梅. 氧气流量对LY12铝合金微弧氧化膜致密性的影响[J]. 材料工程, 2019, 47(5): 86-92.
[2] 蔡满园, 孙晓刚, 陈玮, 邱治文, 陈珑, 刘珍红, 聂艳艳. 以预锂化多壁碳纳米管为负极的锂离子电容器性能[J]. 材料工程, 2019, 47(5): 145-152.
[3] 刘扶庆, 刘夏, 杨庆生. 碳纳米管纤维力-电耦合效应的实验研究[J]. 材料工程, 2018, 46(9): 31-38.
[4] 王匀, 陈英箭, 许桢英, 唐书浩. 基体表面粗糙度对热丝TIG堆焊Inconel625组织和耐腐蚀性能的影响[J]. 材料工程, 2018, 46(7): 94-99.
[5] 朱诗尧, 李平, 叶黎城, 郑俊生, 高源. 基于Pt/CNTs催化剂的燃料电池Pt/Buckypaper催化层的制备与表征[J]. 材料工程, 2018, 46(6): 27-35.
[6] 李晶, 赵世才, 杜锋, 范凤玉, 潘理达, 于化东. 激光构筑槽棱与网格状结构超疏水耐腐蚀表面研究[J]. 材料工程, 2018, 46(5): 86-91.
[7] 孙伟, 朱立群, 李卫平, 刘慧丛. 硅溶胶改性水性丙烯酸树脂对镀锌三价铬钝化膜的封闭作用[J]. 材料工程, 2018, 46(12): 110-116.
[8] 韩宝帅, 薛祥, 赵志勇, 牛涛, 曲海涛, 徐严谨, 侯红亮. 碳纳米管纤维与薄膜致密化研究现状[J]. 材料工程, 2018, 46(11): 37-44.
[9] 陈玮, 孙晓刚, 蔡满园, 聂艳艳, 邱治文, 陈珑. 碳纳米管/纤维素复合纸为电极的超级电容器性能[J]. 材料工程, 2018, 46(10): 113-119.
[10] 刘珍红, 孙晓刚, 陈珑, 邱治文, 蔡满园. 碳纳米管纸/纳米硅复合电极的锂离子电池性能[J]. 材料工程, 2018, 46(1): 99-105.
[11] 许健, 竺培显, 韩朝辉, 曹勇, 周生刚. 表面处理对碳纤维基β-PbO2电极性能的影响[J]. 材料工程, 2018, 46(1): 125-132.
[12] 曾少华, 申明霞, 段鹏鹏, 郑鸿奎, 王珠银. 碳纳米管-玻璃纤维织物增强环氧复合材料的结构与性能[J]. 材料工程, 2017, 45(9): 38-44.
[13] 杨旭东, 陈亚军, 师春生, 赵乃勤. 球磨工艺对原位合成碳纳米管增强铝基复合材料微观组织和力学性能的影响[J]. 材料工程, 2017, 45(9): 93-100.
[14] 王询, 林建平, 万海浪. 铝合金表面特性对其胶接性能影响的研究进展[J]. 材料工程, 2017, 45(8): 123-131.
[15] 毕波, 王学宝. 纳米碳材料在聚合物阻燃中的应用研究进展[J]. 材料工程, 2017, 45(5): 135-144.
Full text



版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持