Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (5): 92-98    DOI: 10.11868/j.issn.1001-4381.2016.001373
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
耐腐蚀超疏水铜网的制备及其在油水分离中的应用
罗晓民, 魏梦媛, 曹敏
陕西科技大学 轻工科学与工程学院, 西安 710021
Preparation of Superhydrophobic Cu Mesh with Corrosion Resistance and Applications in Oil-water Separation
LUO Xiao-min, WEI Meng-yuan, CAO Min
College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
全文: PDF(3557 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 针对目前超疏水材料耐腐蚀差的问题,制备一种耐腐蚀的超疏水铜网,并应用于油水混合物的分离。将十八胺修饰的多壁碳纳米管与有机硅改性的水性聚氨酯相结合,喷涂到铜网制备了具有鸟巢状结构的铜基超疏水表面。结果表明,该表面呈现对水高的接触角162°和对油极低接触角0°。另外,可对石油醚/水、四氯化碳/水、甲苯/水、己烷/水、煤油/水等油水混合物高效分离,分离效率均大于93.79%,且具有良好的可循环使用性。耐腐蚀性测试结果表明,该超疏水表面分别在1 mol/L的NaOH,HCl,NaCl溶液中浸泡24h后,仍可保持超疏水特性,具有优异的耐腐蚀性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
罗晓民
魏梦媛
曹敏
关键词 超疏水铜网耐腐蚀油水分离碳纳米管水性聚氨酯    
Abstract:In order to solve the existing problem of the poor corrosion resistance of the superhydrophobic materials, a novel type of copper mesh-based superhydrophobic materials with outstanding corrosion resistance was prepared and then was applied to the oil/water separation. The octadecylamine modified multi-walled carbon nanotubes was combined with the aminoethylaminopropyl polydimethylsiloxane(AEAPS) modified WPU and one-step spray method was adopted to prepare the copper mesh-based superhydrophobic surfaces with nest-like structure. The as-prepared mesh shows both superhydrophobic and superoleophilic properties simultaneously with a high water contact of 162° and an oil contact angle of 0°. Thus, they can be used to separate a series of oil/water mixtures, such as kerosene, toluene, tetrachloromethane, petroleum and hexane with separation efficiency above 93.79% and stable recyclability. In addition, the as-prepared mesh can maintain its superhydrophobic property after soaking in corrosive solutions (1mol/L NaOH, HCl, NaCl) for 24h.
Key wordssuperhydrophobic copper mesh    corrosion resistance    oil/water separation    carbon nanotubes    waterborne polyurethane
收稿日期: 2016-11-19      出版日期: 2018-05-16
中图分类号:  TB37  
通讯作者: 罗晓民(1965-),女,教授,硕士,主要从事超细纤维合成革以及水性聚氨酯的研究与应用,联系地址:陕西省西安市未央区陕西科技大学轻工科学与工程学院(710021),E-mail:18634620832@163.com     E-mail: 18634620832@163.com
引用本文:   
罗晓民, 魏梦媛, 曹敏. 耐腐蚀超疏水铜网的制备及其在油水分离中的应用[J]. 材料工程, 2018, 46(5): 92-98.
LUO Xiao-min, WEI Meng-yuan, CAO Min. Preparation of Superhydrophobic Cu Mesh with Corrosion Resistance and Applications in Oil-water Separation. Journal of Materials Engineering, 2018, 46(5): 92-98.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.001373      或      http://jme.biam.ac.cn/CN/Y2018/V46/I5/92
[1] SHANNON M A,BOHN P W,ELIMELECH M,et al.Science and technology for water purification in the coming decades[J].Nature,2008,452(7185):301-310.
[2] WANG B,LIANG W,GUO Z,et al.Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation:a new strategy beyond nature[J].Chemical Society Reviews,2015,44(1):336-61.
[3] PALUMBO F,MUNDO R D,CAPPELLUTI D,et al.Superhydrophobic and superhydrophilic polycarbonate by tailoring chemistry and nano-texture with plasma processing[J].Plasma Processes and Polymers,2011,8(2):118-126.
[4] 汪怀远,王恩群,孟旸,等.超双疏耐磨PPS基涂层的制备与性能[J].材料工程,2017,45(1):38-42.WANG H Y,WANG E Q,MENG Y,et al.Preparation and properties of superamphiphobic wear-resistance PPS-based coating[J].Journal of Materials Engineering,2017,45(1):38-42.
[5] LI J,YAN L,LI H,et al.A facile one-step spray-coating process for the fabrication of a superhydrophobic attapulgite coated mesh used in oil/water separation[J].RSC Adv,2015,5:53802-53808.
[6] LI J,KANG R,TANG X,et al.Superhydrophobic meshes that can repel hot water and strong corrosive liquids used for efficient gravity-driven oil/water separation[J].Nanoscale,2016,8(14):7638-7645.
[7] TAO M,XUE L,LIU F,et al.An intelligent superwetting PVDF membrane showing switchable transport performance for oil/water separation[J].Advanced Materials,2014,26(18):2943-2948.
[8] GONDAL M A,SADULLAH M S,DASTAGEER M A,et al.Study of factors governing oil-water separation process using TiO2 films prepared by spray deposition of nanoparticle dispersions[J].ACS Applied Materials&Interfaces,2014,6(16):13422-13429.
[9] FANG Y,LI X,LI F,et al.Self-assembly of cobalt-centered metal organic framework and multiwalled carbon nanotubes hybrids as a highly active and corrosion-resistant bifunctional oxygen catalyst[J].Journal of Power Sources,2016,326:50-59.
[10] ASHRAF A,SALIH H,NAM S W,et al.Robust carbon nanotube membranes directly grown on Hastelloy substrates and their potential application for membrane distillation[J].Carbon,2016,106:243-251.
[11] XU D,LIU H,YANG L,et al.Fabrication of superhydrophobic surfaces with non-aligned alkyl-modified multi-wall carbon nanotubes[J].Carbon,2006,44(15):3226-3231.
[12] DENG J,CAO J,LI J,et al.Mechanical and surface properties of polyurethane/fluorinated multi-walled carbon nanotubes composites[J].Journal of Applied Polymer Science,2008,108(3):2023-2028.
[13] TANG Q,SUN J,YU S,et al.Improving thermal conductivity and decreasing supercooling of paraffin phase change materials by n-octadecylamine-functionalized multi-walled carbon nanotubes[J].RSC Advances,2014,4:36584-36590.
[14] WANG X,HU H,YE Q,et al.Superamphiphobic coatings with coralline-like structure enabled by one-step spray of polyurethane/carbon nanotube composites[J].Journal of Materials Chemistry,2012,22(19):9624-9631.
[15] HONG C,FAN Q,CHEN D,et al.Synthesis and properties of polyurethane modified with an aminoethylaminopropyl-substituted polydimethylsiloxane Ⅱ waterborne polyurethanes[J].Journal of Applied Polymer Science,2001,79(2):295-301.
[16] XU C,CAI Z,XING J,et al.Synthesis of polypropylene carbonate polyol-based waterborne polyurethane modified with polysiloxane and its film properties[J].Fibers and Polymers,2014,15(4):665-671.
[17] WENZEL R N.Resistance of solid surfaces to wetting by water[J].Industrial&Engineering Chemistry,1936,28(8):988-994.
[18] CASSIE A B D,BAXTER S.Wettability of porous surfaces[J].Transactions of the Faraday Society,1944,40:546-551.
[1] 胡洁, 董中奇, 沈英明, 王杨, 杨俊雅. Mo元素对LaFe11.5Si1.5磁制冷材料耐腐蚀性能及磁性能的影响[J]. 材料工程, 2020, 48(8): 119-125.
[2] 张淑娴, 邓凌峰, 连晓辉, 谭洁慧, 李金磊. 微量CNTs包覆对LiNi0.8Co0.1Mn0.1O2正极材料电化学性能的影响[J]. 材料工程, 2020, 48(5): 68-74.
[3] 李旭, 孙晓刚, 王杰, 陈玮, 黄雅盼, 梁国东, 魏成成, 胡浩. 无黏结剂柔性Si/CNT/纤维素复合阳极及其电化学性能[J]. 材料工程, 2020, 48(4): 139-144.
[4] 姚小飞, 田伟, 李楠, 王萍, 吕煜坤. 铜导线表面热浸镀PbSn合金镀层的组织与性能[J]. 材料工程, 2020, 48(3): 148-154.
[5] 杨斌, 李云龙, 王世杰, 聂瑞, 王照智. 拉应力下碳纳米管增强高分子基复合材料的应力分布[J]. 材料工程, 2020, 48(2): 79-86.
[6] 殷小春, 尹有华, 成迪, 杨智韬. 正应力支配下混合顺序对PA6/HDPE/CNTs体系结构及性能的影响[J]. 材料工程, 2020, 48(2): 87-93.
[7] 陈玮, 孙晓刚, 胡浩, 王杰, 李旭, 梁国东, 黄雅盼, 魏成成. AC+Li(NiCoMn)O2/Li4Ti5O12+MWCNTs混合型电容器[J]. 材料工程, 2020, 48(1): 128-135.
[8] 徐鹏, 王冠韬, 刘奎, 罗斯达. 石墨烯/碳纳米管嵌入式纤维传感器对树脂基复合材料原位监测的结构-性能关系对比[J]. 材料工程, 2019, 47(9): 29-37.
[9] 李旭, 孙晓刚, 蔡满园, 王杰, 陈玮, 陈珑, 邱治文. 氟化多壁碳纳米管作正极对锂/氟电池性能的影响[J]. 材料工程, 2019, 47(8): 22-27.
[10] 蔡满园, 孙晓刚, 陈玮, 邱治文, 陈珑, 刘珍红, 聂艳艳. 以预锂化多壁碳纳米管为负极的锂离子电容器性能[J]. 材料工程, 2019, 47(5): 145-152.
[11] 王玉洁, 张鹏, 王选, 杜云慧, 王胜林, 张伟一, 鹿红梅. 氧气流量对LY12铝合金微弧氧化膜致密性的影响[J]. 材料工程, 2019, 47(5): 86-92.
[12] 葛超群, 汪刘应, 刘顾. 碳基/羰基铁复合吸波材料的研究进展[J]. 材料工程, 2019, 47(12): 43-54.
[13] 王瑶, 赵雪妮, 党新安, 杨璞, 魏森森, 张伟刚, 刘庆瑶. 钢表面梯度结构耐腐蚀铝涂层的制备及研究[J]. 材料工程, 2019, 47(11): 148-154.
[14] 鲁浩, 李楠, 王海波, 廖帮全, 姜亚明, 荆妙蕾, 徐志伟, 陈莉, 张兴祥. 碳纳米管复合材料的3D打印技术研究进展[J]. 材料工程, 2019, 47(11): 19-31.
[15] 刘扶庆, 刘夏, 杨庆生. 碳纳米管纤维力-电耦合效应的实验研究[J]. 材料工程, 2018, 46(9): 31-38.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn