Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (12): 93-98    DOI: 10.11868/j.issn.1001-4381.2016.001380
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
TiO2-NTs/rGO复合材料的制备及电化学性能
胡志海1, 江国栋1,2, 熊剑1,2, 朱星1, 袁颂东1,2
1. 湖北工业大学 太阳能高效利用湖北省协同创新中心, 武汉 430068;
2. 催化材料湖北省协同创新中心, 武汉 430068
Preparation and Electrochemical Performance of TiO2-NTs/rGO Composite
HU Zhi-hai1, JIANG Guo-dong1,2, XIONG Jian1,2, ZHU Xing1, YUAN Song-dong1,2
1. Hubei Collaborative Innovation Center for High-efficiency Utilization of Solar Energy, Hubei University of Technology, Wuhan 430068, China;
2. The Synergistic Innovation Center of Catalysis Materials of Hubei Province, Wuhan 430068, China
全文: PDF(3193 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 通过碱液水热法制备TiO2纳米管(TiO2-NTs)前驱体,并将其与氧化石墨烯复合得到二氧化钛纳米管/还原氧化石墨烯(TiO2-NTs/rGO)复合材料。利用X射线衍射仪(XRD),透射电子显微镜(TEM),电化学测试等分析技术对复合物进行表征。结果表明:复合物中TiO2-NTs晶相为B型(TiO2(B)),其管径约为25~30nm;与单纯TiO2-NTs相比,石墨烯负载的TiO2-NTs的倍率性能和循环性能都得到显著改善,在放电倍率为1C(335mA/g)时,TiO2-NTs/rGO和TiO2-NTs首次放电容量分别为258.5mAh/g和214.9mAh/g;电化学阻抗谱测试显示,复合材料的电荷转移电阻明显小于纯相TiO2-NTs。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡志海
江国栋
熊剑
朱星
袁颂东
关键词 TiO2(B)纳米管石墨烯电化学    
Abstract:The precursor of titanium dioxide nanotubes(TiO2-NTs) was obtained by alkaline hydrothermal approach, which was supported by graphene oxide to form titanium dioxide nanotubes/reduced graphene oxide composite(TiO2-NTs/rGO). The composite was characterized by X-ray diffraction(XRD), transmission electron microscope (TEM) and electrochemical measurements. The results show that the crystalline phase of TiO2-NTs in composite is TiO2(B) with diameter of about 25-30nm. Compared with pure TiO2-NTs,the rate performance and cycle life of composite are improved remarkablely by loading on graphene. When discharged at the rate of 1C(335mA/g),the initial discharge capacity of TiO2-NTs/rGO and TiO2-NTs are 258.5mAh/g and 214.9mAh/g, respectively. The charge transfer resistance of composite is smaller than pure TiO2-NTs characterized by electrochemical impedance spectroscopy.
Key wordsTiO2(B)    nanotube    graphene    electrochemistry
收稿日期: 2016-11-23      出版日期: 2017-12-19
中图分类号:  TB332  
通讯作者: 袁颂东(1967-),男,博士,教授,研究方向为储能材料,联系地址:湖北省武汉市洪山区湖北工业大学太阳能高效利用湖北省协同创新中心(430070),E-mail:yuansd2001@163.com     E-mail: yuansd2001@163.com
引用本文:   
胡志海, 江国栋, 熊剑, 朱星, 袁颂东. TiO2-NTs/rGO复合材料的制备及电化学性能[J]. 材料工程, 2017, 45(12): 93-98.
HU Zhi-hai, JIANG Guo-dong, XIONG Jian, ZHU Xing, YUAN Song-dong. Preparation and Electrochemical Performance of TiO2-NTs/rGO Composite. Journal of Materials Engineering, 2017, 45(12): 93-98.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.001380      或      http://jme.biam.ac.cn/CN/Y2017/V45/I12/93
[1] ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179):652-657.
[2] LIU C, LI F, MA L P, et al. Advanced materials for energy storage[J]. Advanced materials E,2010, 22(8):28-62.
[3] DYLLA A G, HENKELMAN G, STEVENSON K J. Lithium insertion in nanostructured TiO2(B) architectures[J]. Accounts of Chemical Research, 2013, 46(5):1104-1112.
[4] ETACHERI V, YOUREY J E, BARTLETT B M. Chemically bonded TiO2-bronze nanosheet/reduced graphene oxide hybrid for high-power lithium ion batteries[J]. ACS Nano, 2014, 8(2):1491-1499.
[5] PARK S J, KIM H, KIM Y J, et al. Preparation of carbon-coated TiO2 nanostructures for lithium-ion batteries[J]. Electrochimica Acta, 2011, 56(15):5355-5362.
[6] TANG Y, ZHANG Y, LI W, et al. Rational material design for ultrafast rechargeable lithium-ion batteries[J]. Chemical Society Reviews, 2015, 44(17):5926-5940.
[7] 杨程, 陈宇滨, 田俊鹏, 等. 功能化石墨烯的制备及应用研究进展[J]. 航空材料学报, 2016, 36(3):40-56. YANG C, CHEN Y B, TIAN J P, et al. Development in preparation and application of graphene functionalization[J]. Journal of Aeronautical Materials, 2016, 36(3):40-56.
[8] HUMMERS W S, OFFEMAN R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6):1339-1339.
[9] LIU H, CAO K, XU X, et al. Ultrasmall TiO2 nanoparticles in situ growth on graphene hybrid as superior anode material for sodium/lithium ion batteries[J]. ACS Applied Materials & Interfaces, 2015, 7(21):11239-11245.
[10] ZHEN M, GUO S, GAO G, et al. TiO2-B nanorods on reduced graphene oxide as anode materials for Li ion batteries[J]. Chemical Communications, 2015, 51(3):507-510.
[11] CAO H, LI B, ZHANG J, et al. Synthesis and superior anode performance of TiO2@reduced graphene oxide nanocomposites for lithium ion batteries[J]. Journal of Materials Chemistry, 2012, 22(19):9759-9766.
[12] SHEN T, ZHOU X, CAO H, et al. TiO2(B)-CNT-graphene ternary composite anode material for lithium ion batteries[J]. RSC Advances, 2015, 5(29):22449-22454.
[13] LAN T, DOU J, XIE F, et al. Ultrathin TiO2-B nanowires with enhanced electrochemical performance for Li-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(18):10038-10044.
[14] OLSON C L, NELSON J, ISLAM M S. Defect chemistry, surface structures, and lithium insertion in anatase TiO2[J]. The Journal of Physical Chemistry B, 2006, 110(20):9995-10001.
[15] ZHANG Y, FU Q, XU Q, et al. Improved electrochemical performance of nitrogen doped TiO2-B nanowires as anode materials for Li-ion batteries[J]. Nanoscale, 2015, 7(28):12215-12224.
[16] OSAKA T, MOMMA T, MUKOYAMA D, et al. Proposal of novel equivalent circuit for electrochemical impedance analysis of commercially available lithium ion battery[J]. Journal of Power Sources, 2012, 205(14):483-486.
[17] OSAKA T, NAKADE S, RAJAM KI M, et al. Influence of capacity fading on commercial lithium-ion battery impedance[J]. Journal of Power Sources, 2003, 119/121:929-933.
[18] SEKI S, KIHIRA N, MITA Y, et al. AC Impedance study of high-power lithium-ion secondary batteries-effect of battery size[J]. Journal of The Electrochemical Society, 2011, 158(2):A163-A166.
[19] DENG Z, ZHANG Z, LAI Y, et al. Electrochemical impedance spectroscopy study of a lithium/sulfur battery:modeling and analysis of capacity fading[J]. Journal of the Electrochemical Society, 2013, 160(4):A553-A558.
[20] ZHUANG Q C, QIU X Y, XU S D, et al. Diagnosis of electrochemical impedance spectroscopy in lithium ion batteries[J]. Progress in Chemistry, 2010, 22(6):1044-1057.
[1] 王晨, 燕绍九, 南文争, 陈翔. 表面活性剂对高浓度石墨烯水分散液制备的影响[J]. 材料工程, 2019, 47(7): 50-56.
[2] 朱刚兵, 张得鹏, 钱俊娟. 二硫化钼基纳米材料在电化学传感/析氢领域的研究进展[J]. 材料工程, 2019, 47(6): 20-33.
[3] 崔超婕, 田佳瑞, 杨周飞, 金鹰, 董卓娅, 谢青, 张刚, 叶珍珍, 王瑾, 刘莎, 骞伟中. 石墨烯在锂离子电池和超级电容器中的应用展望[J]. 材料工程, 2019, 47(5): 1-9.
[4] 薛子明, 雷卫宁, 王云强, 钱海峰, 李奇林. 超临界条件下脉冲占空比对石墨烯复合镀层微观结构和性能的影响[J]. 材料工程, 2019, 47(5): 53-62.
[5] 袁晓静, 查柏林, 陈小虎, 禹志航, 王新军. WC-10Co-4Cr涂层在不同温度酸与NaCl溶液中的耐腐蚀性能[J]. 材料工程, 2019, 47(5): 63-71.
[6] 蔡满园, 孙晓刚, 陈玮, 邱治文, 陈珑, 刘珍红, 聂艳艳. 以预锂化多壁碳纳米管为负极的锂离子电容器性能[J]. 材料工程, 2019, 47(5): 145-152.
[7] 王晨, 燕绍九, 南文争, 王继贤, 彭思侃. 高浓度石墨烯水分散液的制备与表征[J]. 材料工程, 2019, 47(4): 56-63.
[8] 卢子龙, 安立宝, 刘扬. 不同浓度硼掺杂石墨烯吸附多层金原子的第一性原理研究[J]. 材料工程, 2019, 47(4): 64-70.
[9] 权月, 尹杰, 王园园, 包斯元, 鲁雄, 冯波, 周杰. 暴露高活性晶面的TiO2纳米管的制备及生物活性[J]. 材料工程, 2019, 47(4): 97-104.
[10] 李芹, 盛利成, 董丽敏, 张彦飞, 金立国. ZnCo2O4及ZnCo2O4/rGO复合材料的制备与电化学性能[J]. 材料工程, 2019, 47(4): 71-76.
[11] 王继刚, 余永志, 邹婧叶, 孟江, 李淑萍, 蒋南. 基于微波辐照合成类石墨烯氮化碳的研究进展[J]. 材料工程, 2019, 47(4): 15-24.
[12] 邹婧叶, 余永志, 顾永攀, 岳夏薇, 孟江, 李淑萍, 王继刚. 高能微波辐照合成类石墨烯氮化碳纳米片的结构特征[J]. 材料工程, 2019, 47(3): 1-7.
[13] 赵双赞, 燕绍九, 陈翔, 洪起虎, 李秀辉, 戴圣龙. 石墨烯纳米片增强铝基复合材料的动态力学行为[J]. 材料工程, 2019, 47(3): 23-29.
[14] 余煜玺, 夏范森, 黄奇凡. 石墨烯改性PDC-SiCNO陶瓷的制备及其介电性能[J]. 材料工程, 2019, 47(3): 8-14.
[15] 杨宇凯, 张宝, 王旭东, 张虎生, 武岳, 关永军. 石墨烯及碳化硅增强铝基复合材料的冲击力学行为[J]. 材料工程, 2019, 47(3): 15-22.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn