Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (12): 135-146    DOI: 10.11868/j.issn.1001-4381.2016.001390
  综述 本期目录 | 过刊浏览 | 高级检索 |
纳米改性涂层及焊接工艺参数对无镀铜实心焊丝导电嘴磨损影响的研究进展
栗卓新1, 万千1, 张天理1, TILLMAN Wolfgang2
1. 北京工业大学 材料科学与工程学院, 北京 100124;
2. 多特蒙德工业大学 材料工程研究所, 德国 多特蒙德 24427
Progress in Effect of Nano-modified Coatings and Welding Process Parameters on Wear of Contact Tube for Non-copper Coated Solid Wires
LI Zhuo-xin1, WAN Qian1, ZHANG Tian-li1, TILLMAN Wolfgang2
1. College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China;
2. Institute of Materials Engineering, Dortmund University of Technology, Dortmund 24427, Germany
全文: PDF(4431 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 环保型无镀铜实心焊丝是气保护实心焊丝发展的主要趋势,而导电嘴磨损是其应用的瓶颈,综述了无镀铜实心焊丝表面纳米改性涂层及焊接工艺参数对导电嘴磨损的影响,认为:纳米颗粒在无镀铜实心焊丝与导电嘴的摩擦界面形成摩擦反应膜可以减少导电嘴的磨损;纳米改性涂层可使焊丝表面的油膜具有优异的润滑、导电、导热三重特性,是减少导电嘴磨损的可行途径;导电嘴的磨损随焊接电流的升高而增大,直流反接(Direct-current Electrode Positive,DCEP)时导电嘴的磨损比直流正接(Direct-current Electrode Negative,DCEN)时严重;电弧烧蚀和电流腐蚀是导电嘴磨损的主要机制。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
栗卓新
万千
张天理
TILLMAN Wolfgang
关键词 无镀铜实心焊丝导电嘴磨损纳米改性涂层焊接工艺参数    
Abstract:Environment-friendly non-copper coated solid wire is the main developing trend for gas shielded solid wires, whereas wear of contact tube limits their wide application. The effect of nano-modified coatings and welding process parameters on wear of contact tube for non-copper coated solid wires was reviewed. It was found that the wear of contact tube can be reduced due to the formation of tribo-films on the rubbing surfaces of welding wires against contact tube; it is feasible to decrease contact tube wear when non-copper coated solid wires are coated with nano-modified lubricants, thereby displaying excellent lubricating and thermal or electrical conduction characteristics. The wear of contact tube increases with the increase of welding current. The wear of contact tube is worse in direct-current electrode positive (DCEP) than in direct-current electrode negative (DCEN). Arc ablation and electrical erosion are the dominant wear mechanisms of contact tube.
Key wordsnon-copper coated solid wire    wear of contact tube    nano-modified coating    welding process parameter
收稿日期: 2016-11-24      出版日期: 2017-12-19
中图分类号:  TG424  
通讯作者: 栗卓新(1963-),男,教授,博士生导师,主要从事焊接材料及金属焊接性、表面工程方面的研究,联系地址:北京市朝阳区平乐园100号北京工业大学材料学院(100124),E-mail:zhxlee@bjut.edu.cn     E-mail: zhxlee@bjut.edu.cn
引用本文:   
栗卓新, 万千, 张天理, TILLMAN Wolfgang. 纳米改性涂层及焊接工艺参数对无镀铜实心焊丝导电嘴磨损影响的研究进展[J]. 材料工程, 2017, 45(12): 135-146.
LI Zhuo-xin, WAN Qian, ZHANG Tian-li, TILLMAN Wolfgang. Progress in Effect of Nano-modified Coatings and Welding Process Parameters on Wear of Contact Tube for Non-copper Coated Solid Wires. Journal of Materials Engineering, 2017, 45(12): 135-146.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.001390      或      http://jme.biam.ac.cn/CN/Y2017/V45/I12/135
[1] 智研咨询集团. 2016-2022年中国焊接材料行业市场现状分析及投资规划研究报告[R/OL]. (2016-06)[2016-09-01]. http://www.chyxx.com/research/201606/422649.html.
[2] DÁNIEL K, LEVENTE N. Investigation of the contact and wear of the welding wire and MIG-welding contact Tips[C]//KÁROLY J.Design, fabrication and economy of metal structures, International Conference Proceedings 2013. Heidelberg:Springer, 2013:489-494.
[3] 北京:埃森焊接与切割展览会组委会. 第二十一届北京·埃森焊接与切割展会展后综合技术报告[R/OL]. (2016-11)[2017-01-08].http://www.beijing-essen-welding.com/cn/21essen2016 jsbg.pdf.
[4] MIYAZAKI K. Environmental modification from aspect of welding materials[J]. Welding International, 2008,22(8):491-496.
[5] FRANK T, BRUNO S, ESAB G, et al. Trouble-free MAG-welding with OK Aristorod bare welding wire[J]. SVETSAREN-the ESAB Welding and Cutting Journal, 2005, 60(2):25-27.
[6] 王洋娜. 无镀铜焊丝的表面功能化处理[D]. 天津:天津大学, 2011. WANG Y N. Surface functionalization processing of non-copper plating wire[D]. Tianjin:Tianjin University, 2011.
[7] 闫亮. 钢焊丝表面纳米复合涂层的工艺及性能研究[D]. 天津:河北工业大学, 2014. YAN L. Study on nano-composite coating process and performance for steel wire surface[D]. Tianjin:Hebei University of Technology, 2014.
[8] 曹晓涛. 表面处理对无镀铜焊丝导电嘴磨损及抗锈性影响的研究[D]. 北京:北京工业大学,2017. CAO X T. Study on influence of surface-treatment on contact tip wear and rust resistance of non-copper coated solid wire[D]. Beijing:Beijing University of Technology, 2017.
[9] 张亮. 高强钢无镀铜焊丝表面处理方法与机理研究[D].镇江:江苏科技大学, 2013. ZHANG L. The research of high strength steel non-copper solid wire's surface treatments and mechanism[D]. Zhenjiang:Jiangsu University of Science and Technology, 2013.
[10] 周胜. 基于纳米WS2/MoS2的润滑油摩擦学性能实验研究[D]. 长沙:中南大学, 2012. ZHOU S. Experimental study on tribological properties of lubrication based on WS2/MoS2 complex nanoparticles[D]. Changsha:Central South University, 2012.
[11] SU Y, GONG L, CHEN D D. Dispersion stability and thermophysical properties of environmentally friendly graphite oil-based nanofluids used in machining[J]. Advances in Mechanical Engineering, 2016, 8(1):1-11.
[12] MALLAKPOURA S, MADANIA M. A review of current coupling agents for modification of metal oxide nanoparticles[J]. Progress in Organic Coatings, 2015, 86:194-207.
[13] ZHAO J, MILANOVA M, MARIJN M C G, et al. Surface modification of TiO2 nanoparticles with silane coupling agents[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2012, 413:273-279.
[14] 陈强. CuO/Al2O3复合纳米颗粒作为润滑油添加剂的性能研究[D]. 济南:济南大学, 2013. CHEN Q. Performance of CuO/Al2O3 composite nanoparticles as lubricant oil additive[D]. Jinan:University of Jinan, 2013.
[15] KANG T, JANG I, OH S G. Surface modification of silica nanoparticles using phenyl trimethoxysilane and their dispersion stability in N-methyl-2-pyrrolidone[J]. Colloids and Surfaces A:physicochem Engineering Aspects, 2016, 501:24-31.
[16] 刘彦生, 王红燕, 杨建文. 硅烷偶联剂改性纳米SiO2的分散性能[J]. 材料开发与应用, 2014, 29(3):56-60. LIU Y S, WANG H Y, YANG J W. Dispersion of nano-SiO2 modified silane coupling agent[J]. Development and Application of Materials, 2014, 29(3):56-60.
[17] DAI W, KHEIREDDIN B, GAO H, et al. Roles of nanoparticles in oil lubrication[J]. Tribology International, 2016, 102:88-98.
[18] HU C Z, BAI M L, LV J Z. Molecular dynamics investigation of the effect of copper nanoparticle on the solid contact between friction surfaces[J].Applied Surface Science,2014,321:302-309.
[19] WANG X L, YIN Y L, ZHANG G N, et al. Study on antiwear and repairing performances about mass of nano-copper lubricating additives to 45 steel[J]. Physics Procedia, 2013, 50:466-472.
[20] 许一,南峰,徐滨士. 凹凸棒石/油溶性纳米铜复合润滑添加剂的摩擦学性能[J]. 材料工程,2016, 44(10):41-46. XU Y, NAN F, XU B S. Tribological properties of attapulgite/oil-soluble nano-Cu composite lubricating additive[J]. Journal of Materials Engineering, 2016, 44(10):41-46.
[21] JATTI V S, SINGH T P. Copper oxide nano-particles as friction-reduction and anti-wear additives in lubricating oil[J]. Journal of Mechanical Science and Technology, 2015, 29(2):793-798.
[22] GHAEDNIA H, JACKSON R, KHODADADI J M. Experimental analysis of stable CuO nanoparticle enhanced lubricants[J]. Journal of Experimental Nanoscience, 2015, 10(1):1-18.
[23] PADMINI R, KRISHNA P V, RAO G K M. Effectiveness of vegetable oil based nanofluids as potential cutting fluids in turning AISI 1040 steel[J]. Tribology International, 2016, 94:490-501.
[24] ALDANA P U, VACHER B, MOGNE T L, et al. Action mechanism of WS2 nanoparticles with ZDDP additive in boundary lubrication regime[J]. Tribol Lett, 2014, 56:249-258.
[25] GU Y, ZHAO X C, LIU Y, et al. Preparation and tribological properties of dual-coated TiO2 nanoparticles as water-based lubricant additives[J/OL]. Journal of Nanomaterials, 2014.[2016-10-07]. http://dx.doi.org/10.1155/2014/785680.
[26] ARUMUGAM S, SRIRAM G. Preliminary study of nano-and microscale TiO2 additives on tribological behavior of chemically modified rapeseed oil[J]. Tribology Transactions, 2013, 56(5):97-805.
[27] HOU X, HE J, YU L G, et al. Preparation and tribological properties of fluoro silane surface-modified lanthanum trifluoride nanoparticles as additive of fluoro silicone oil[J]. Applied Surface Science, 2014, 316:515-523.
[28] SHEN T J, WANG D X, YUN J, et al. Tribological properties and tribochemical analysis of nano-cerium oxide and sulfurized isobutene in titanium complex grease[J]. Tribology International, 2016, 93:332-346.
[29] GU C X, LI Q Z, GU Z M, et al. Study on application of CeO2 and CaCO3 nanoparticles in lubricating oils[J]. Journal of Rare Earths, 2008, 26(2):163-167.
[30] LIJESH K P, MUZAKKIR S M, HIRANI H. Experimental tribological performance evaluation of nano lubricant using multi-walled carbon nano-tubes (MWCNT)[J]. International Journal of Applied Engineering Research, 2015, 10(6):14543-14551.
[31] GE X Y, XIA Y Q, FENG X. Influence of carbon nanotubes on conductive capacity and tribological characteristics of poly(ethylene Glycol-Ran-Propylene Glycol) monobutyl ether as base oil of grease[J]. Journal of Tribology, 2015, 138(1):011801-011801-6.
[32] MOHAMED A, OSMAN T A, KHATTAB A, et al. Tribological behavior of carbon nanotubes as an additive on lithium grease[J]. Journal of Tribology, 2014, 137(1):011801-011801-5.
[33] KAMEL B M, MOHAMED A, SHERBINY M E, et al. Tribological behaviour of calcium grease containing carbon nanotubes additives[J]. Industrial Lubrication and Tribology, 2016, 68(6):723-728.
[34] TEVET O. Mechanical and tribological properties of inorganic fullerene-like (IF) nanoparticles[D]. Rehovot:Weizmann Institute of Science, 2011.
[35] SHIRVANI K A. Nanopolishing by nanofluids in elastohydrodynamic lubrication (EHL)[D]. Washington D C:Howard University, 2015.
[36] MARKO M D. The tribological effects of lubricating oil containing nanometer-scale diamond particles[D]. Columbia:Columbia University, 2015.
[37] COL M N, CELIK O N, SERT A. Tribological behaviours of lubricating oils with CNT and Si3N4 nanoparticle additives[J]. Archives of Materials Science and Engineering, 2014, 67(2):53-59.
[38] SAHIN Y B, CELIK O N, BURNAK N, et al. Modeling and analysis of the effects of nano-oil additives on wear properties of AISI 4140 steel material using mixture design[J]. Journal of Engineering Tribology, 2016, 230(4):442-451.
[39] 陶静梅,洪鹏,陈小丰,等. 碳纳米管增强铜基复合材料的研究进展[J]. 材料工程,2017, 45(4):128-136. TAO J M, HONG P, CHEN X F, et al. Research progress on carbon nanotubes reinforced Cu-matrix composites[J]. Journal of Materials Engineering, 2017, 45(4):128-136.
[40] 代利峰, 安立宝, 陈佳. 碳纳米管接触电阻的研究进展[J]. 航空材料学报, 2016, 36(5):90-96. DAI L F, AN L B, CHEN J. Progress on research of contact resistance of carbon nanotubes[J]. Journal of Aeronautical Materials, 2016, 36(5):90-96.
[41] HONG H P, THOMAS D, WAYNICK A, et al. Carbon nanotube grease with enhanced thermal and electrical conductivities[J]. J Nanopart Res, 2010, 12:529-535.
[42] GE X Y, XIA Y Q, SHU Z Y, et al. Conductive grease synthesized using nanometer ATO as an additive[J]. Friction, 2015, 3(1):56-64.
[43] 刘椿, 夏延秋, 曹正锋. 碳纳米管在润滑脂中的导电性和摩擦学性能研究[J]. 摩擦学学报, 2015, 35(4):393-397. LIU C, XIA Y Q, CAO Z F. Conductivity and tribological properties of carbon nanotubes in grease[J]. Tribology, 2015, 5(4):393-397.
[44] ZAWRAH M F, KHATTAB R M, GIRGIS L G, et al. Stability and electrical conductivity of water-base Al2O3 nanofluids for different applications[J]. Housing and Building National Research Center Journal, 2016, 12:227-234.
[45] SAROJINI K G K, MANOJ S V, SINGH P K, et al. Electrical conductivity of ceramic and metallic nanofluids[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2013, 417:39-46.
[46] SHIMIZU H, YOKOTA Y, MIZUNO M, et al. Wear mechanism in contact tube[J]. Science and Technology of Welding and Joining, 2006, 11(1):94-105.
[47] LOPEZ L A, PEREZ G Y, GARCIA F J, et al. Study of GMAW process parameters on the mechanisms of wear in contact tips C12200 alloy[J].MRS Proceedings,2015,1766:53-62.
[48] XIONG X Z, TU C J, CHEN D, et al. Arc erosion wear characteristics and mechanisms of pure carbon strip against copper under arcing conditions[J]. Tribol Lett, 2014, 53:293-301.
[49] FADIN V V, ALEUTDINOVA M I, RUBTSOV V Y. About wear and average surface temperature of copper or steel contacts at sliding current collection[C]//Advanced materials with hierarchical structure for new technologies and reliable structures. Tomsk:AIP Publishing, 2015, 020051-1-020051-4. http://dx.doi.org/10.1063/1.4932741.
[50] JIANG H F, ZHANG Q, SHI L. Effective thermal conductivity of carbon nanotube-based nanofluid[J]. Journal of the Taiwan Institute of Chemical Engineers, 2015, 55:76-81.
[51] GOU Y J, LIU Z L, ZHANG G M, et al. Effects of multi-walled carbon nanotubes addition on thermal properties of thermal grease[J]. International Journal of Heat and Mass Transfer, 2014, 74:358-367.
[52] CHEN H Y, WEI H X, CHEN M H, et al. Enhancing the effectiveness of silicone thermal grease by the addition of functionalized carbon nanotubes[J]. Applied Surface Science, 2013, 283:525-531.
[53] XU W, HU R, LI J S, et al. Effect of electrical current on tribological property of Cu matrix composite reinforced by carbon nanotubes[J]. Transactions of Nonferrous Metals Society of China, 2011, 21:2237-2241.
[54] GUAN B S, ZHANG Y Z, XING J D, et al. Study of the friction and wear of electrified copper against copper alloy under dry or moist conditions[J]. Tribology Transactions, 2010, 53(6):927-932.
[55] XIE G X, GUO D, LUO J B. Lubrication under charged conditions[J]. Tribilogy International, 2015, 84:22-35.
[56] CHIOU Y C, LEE R T, LIN S M. Formation mechanism of electrical damage on sliding lubricated contacts for steel pair under DC electric field[J]. Wear, 2009, 266:110-118.
[57] 杨正海. 载流摩擦副的电弧损伤机制研究[D]. 北京:机械科学研究总院, 2015. YANG Z H. Research on the arcing damage mechanism of triboelectric pairs[D]. Beijing:China Academy of Machinery Science and Technology, 2015.
[58] 王逸安, 李金许, 乔利杰. 电流及其极性对浸铜碳滑板摩擦磨损性能的影响[J]. 金属学报, 2012, 48(4):480-484. WANG Y A, LI J X, QIAO L J. Effects of electrical current and its polarity on the properties of friction and wear of copper-impregnated metallized carbon[J]. Acta Metallurgica Sinica, 2012, 48(4):480-484.
[59] YANG X Y, MENG Y G, TIAN Y. Potential-controlled boundary lubrication of stainless steels in non-aqueous sodium dodecyl sulfate solutions[J]. Tribol Lett, 2014, 53:17-26.
[60] YANG X Y, MENG Y G, TIAN Y. Effect of imidazolium ionic liquid additives on lubrication performance of propylene carbonate under different electrical potentials[J]. Tribol Lett, 2014, 56:161-169.
[61] BARES J A, ARGIBAY N, MAUNTLER N, et al. High current density copper-on-copper sliding electrical contacts at low sliding velocities[J]. Wear, 2009, 267:417-424.
[62] IGOR V, FLORIAN A, STEFAN K, et al. The effect of gaseous atmospheres on friction and wear of steel-steel contacts[J]. Tribology International, 2014, 79:99-110.
[63] IGOR V, FLORIAN A, STEFAN K, et al. The influence of temperature on friction and wear of unlubricated steel/steel contacts in different gaseous atmospheres[J]. Tribology International, 2016, 98:155-171.
[64] CHOUBEILA B, ALI B, HAMID Z. Tribological analysis of formation and rupture of oxide films in an electrical sliding contact copper-steel[J]. Study of Civil Engineering and Architecture (SCEA), 2014, 3:54-58.
[65] BARTHEL A J, AZIZI A A, SURDYKA N D, et al. Effects of gas or vapor adsorption on adhesion, friction, and wear of solid interfaces[J]. Langmuir, 2014, 30:2977-2992.
[66] HIRATSUKA K, MEKI Y. The effects of non-friction time and atmosphere in friction/non-friction areas on the wear of metals[J]. Wear, 2011, 270:446-454.
[67] TEVFIK K, LEVENT K. The friction and wear properties of CuZn39Pb3 alloys under atmospheric and vacuum conditions[J]. Wear, 2014, 309:21-28.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn