Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (9): 52-58    DOI: 10.11868/j.issn.1001-4381.2016.001418
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于“离位”增韧技术Z向注射RTM成型的浸润研究
董抒华1, 李伟东2, 丁妍羽3, 贾玉玺4, 刘刚2, 魏春城1
1 山东理工大学 材料科学与工程学院, 山东 淄博 255049;
2 中航复合材料有限责任公司复合材料中心, 北京 100095;
3 济南大学 材料科学与工程学院 建筑材料制备与测试技术重点实验室, 济南 250022;
4 山东大学 材料液固结构演变与加工教育部重点实验室, 济南 250061
Infiltration of Z-direction Injection RTM Process Based on Ex-situ Toughening Technology
DONG Shu-hua1, LI Wei-dong2, DING Yan-yu3, JIA Yu-xi4, LIU Gang2, WEI Chun-cheng1
1 School of Materials Science and Engineering, Shandong University of Technology, Zibo 255049, Shandong, China;
2 Composite Center, AVIC Composite Corporation Ltd., Beijing 100095, China;
3 Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, School of Materials Science & Engineering, University of Jinan, Jinan 250022, China;
4 Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials(Ministry of Education), Shandong University, Jinan 250061, China
全文: PDF(3340 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 针对"离位"增韧技术和Z-RTM成型技术,引入饱和度参数修正Darcy定律,建立描述树脂在纤维预制件中非稳态流动的偏微分方程,研究恒流注射过程中体积流量、树脂黏度和纤维预制件渗透率等工艺参数对非稳态浸润过程注入压力的影响,模拟树脂在层间未增韧和增韧纤维预制件束内和束间的流动。结果表明:数值模拟结果具有可靠性;随着注射时间的增加,纤维预制件内部各点的压力增加;随着体积流量、树脂黏度的增加,注入压力线性增加,而随着纤维渗透率的增加,注入压力减少,符合Darcy定律;实现了树脂在纤维预制件细微观层次浸润的可视化,这种可视化结果为预测树脂在预制件中的宏观流动提供了重要补充,并为实际工艺提供了一定指导作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董抒华
李伟东
丁妍羽
贾玉玺
刘刚
魏春城
关键词 离位增韧非稳态浸润有限元模拟RTM成型    
Abstract:Aimed at ex-situ toughening technology and Z-direction RTM process,Darcy's law was modified by introducing the saturation parameter. The partial differential equation describing the unsteady flow of the resin in the fiber preform was established. The effect of process parameters such as volume flow rate, resin viscosity and fiber preform's permeability during the constant flow process on the injection pressure was investigated. The resin flow between intra-tow and inter-tow of the preform with untoughened layers and toughened layers was simulated. The results show that the numerical simulation results are reliable. The inner pressure in the fiber performs increases with the increase of injection time. The injection pressure increases linearly with the increase of volume flow rate and resin viscosity, while decreases with the increase of fiber preform's permeability, which accords with Darcy's law. The infiltration visualization of resin flow through meso-scale and micro-scale fiber preform is realized, which provides an important supplement for prediction of the macro-flow in fiber preforms and provides guidance for actual process.
Key wordsex-situ toughening    unsteady infiltration    finite element simulation    RTM process
收稿日期: 2016-11-28      出版日期: 2017-09-16
中图分类号:  TB332  
通讯作者: 董抒华(1975-),女,副教授,博士,主要研究方向为高分子复合材料的制备与仿真,联系地址:山东省淄博市山东理工大学材料科学与工程学院(255049),E-mail:dongshuhua@sdut.edu.cn     E-mail: dongshuhua@sdut.edu.cn
引用本文:   
董抒华, 李伟东, 丁妍羽, 贾玉玺, 刘刚, 魏春城. 基于“离位”增韧技术Z向注射RTM成型的浸润研究[J]. 材料工程, 2017, 45(9): 52-58.
DONG Shu-hua, LI Wei-dong, DING Yan-yu, JIA Yu-xi, LIU Gang, WEI Chun-cheng. Infiltration of Z-direction Injection RTM Process Based on Ex-situ Toughening Technology. Journal of Materials Engineering, 2017, 45(9): 52-58.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.001418      或      http://jme.biam.ac.cn/CN/Y2017/V45/I9/52
[1] BODAGHI M, CRISTÓVāO C, GOMES R, et al. Experimental characterization of voids in high fibre volume fraction composites processed by high injection pressure RTM[J]. Composites Part A:Applied Science and Manufacturing, 2016, 82(3):88-99.
[2] 益小苏, 许亚洪, 程群峰, 等. 航空树脂基复合材料的高韧性化研究进展[J]. 科技导报, 2008, 26(6):84-92. YI X S, XU Y H, CHENG Q F, et al. Development of studies on polymer matrix aircraft composite materials highly toughened[J]. Science & Technology Review, 2008, 26(6):84-92.
[3] 刘伟, 曹腊梅, 王岭, 等. RTM成型工艺对Cf/SiBCN陶瓷基复合材料性能的影响[J]. 材料工程, 2015, 43(6):1-6. LIU W, CAO L M, WANG L, et al. Effect of RTM process on the properties of Cf/SiBCN ceramic matrix composites[J]. Journal of Materials Engineering, 2015, 43(6):1-6.
[4] NGUYEN V H, DELÉGLISE-LAGARDÉRE M, PARK C H. Modeling of resin flow in natural fiber reinforcement for liquid composite molding processes[J]. Composites Science and Technology, 2015, 113:38-45.
[5] 李伟东, 刘刚, 安学锋, 等. Z向流动RTM工艺树脂的流动浸润行为[J]. 复合材料学报, 2013, 30(6):82-89. LI W D, LIU G, AN X F, et al. Investigation of resin flowing and infiltration behavior during Z direction flowing RTM process[J]. Acta Materiae Compositae Sinica, 2013, 30(6):82-89.
[6] 刘刚, 张朋, 李伟东, 等. 结构化增韧层增韧RTM复合材料预成型体的渗透特性[J]. 复合材料学报, 2015, 32(2):586-593. LIU G, ZHANG P, LI W D, et al. Permeability of toughened RTM composite preforms by structural toughening layer[J]. Acta Materiae Compositae Sinica, 2015, 32(2):586-593.
[7] 张朋, 刘刚, 胡晓兰, 等. 结构化增韧层增韧RTM复合材料性能[J]. 复合材料学报, 2012, 29(4):1-9. ZHANG P, LIU G, HU X L, et al. Properties of toughened RTM composites by structural toughening layer[J]. Acta Materiae Compositae Sinica, 2012, 29(4):1-9.
[8] 董抒华, 王成国, 贾玉玺, 等. 纤维复合材料预制件渗透率与其结构相关性的研究进展[J]. 材料工程, 2013(5):94-100. DONG S H, WANG C G, JIA Y X, et al. Research progress on the permeability of fiber composite preforms with structural dependence[J]. Journal of Materials Engineering, 2013(5):94-100.
[9] 齐文, 刘东, 赵俊利, 等. RTM工艺充模过程模拟研究进展[J]. 玻璃钢/复合材料, 2015(12):105-109. QI W, LIU D, ZHAO J L, et al. Progress in numerical simulation of mold filling in RTM[J]. Fiber Reinforced Plastics/Composites, 2015(12):105-109.
[10] 秦伟, 李海晨, 张志谦, 等. RTM工艺树脂流动过程数值模拟及实验比较[J]. 复合材料学报, 2003, 20(4):77-80. QIN W, LI H C, ZHANG Z Q, et al. Comparison between numerical simulation and experimental result of resin flow in RTM[J]. Acta Materiae Compositae Sinica, 2003, 20(4):77-80.
[11] 戴福洪, 张博明, 杜善义, 等. 复杂形状三维薄壁构件RTM制造工艺注模过程模拟[J]. 复合材料学报, 2004, 21(2):87-91. DAI F H, ZHANG B M, DU S Y, et al. Simulation of mould-filling in RTM process for 3D complex shape thin shell parts[J]. Acta Materiae Compositae Sinica, 2004, 21(2):87-91.
[12] LAURENZI S, GRILLI A, PINNA M, et al. Process simulation for a large composite aeronautic beam by resin transfer molding[J]. Composites Part B:Engineering, 2014, 57:47-55.
[13] TAN H, PILLAI K M. Multiscale modeling of unsaturated flow in dual-scale fiber preforms of liquid composite molding I:Isothermal flows[J]. Composites Part A:Applied Science and Manufacturing, 2012, 43(1):1-13.
[14] LUOMA J A, VOLLER V R. An explicit scheme for tracking the filling front during polymer mold filling[J]. Applied Mathematical Modelling, 2000, 24(8/9):575-590.
[15] LIM S T, LEE W I. An analysis of the three-dimensional resin-transfer mold filling process[J]. Composites Science and Technology, 2000, 60(7):961-975.
[16] SHOJAEI A. A numerical study of filling process through multilayer preforms in resin injection/compression molding[J]. Composites Science and Technology, 2006, 66(11/12):1546-1557.
[17] 李永静, 晏石林, 严飞, 等. 注射条件对LCM工艺非饱和流动特性影响[J]. 复合材料学报, 2016, 33(11):2688-2697. LI Y J, YAN S L, YAN F, et al. The influences of injection conditions on the unsaturated flow of LCM process[J]. Acta Materiae Compositae Sinica, 2016, 33(11):2688-2697.
[18] KLUNKER F, ELSENHANS C, ARANDA S, et al. Modelling the resin infusion process, part I:flow modelling and numerical investigation for constant geometries[J]. Journal of Plastics Technology, 2011, 7(5):179-200.
[19] NGO N D, TAMMA K K. Microscale permeability predictions of porous fibrous media[J]. International Journal of Heat and Mass Transfer, 2001, 44(16):3135-3145.
[20] 杨波, 王时龙, 毕凤阳. 基于混合网格方法的VARTM工艺充模仿真与实验验证[J/OL]. 复合材料学报, http://www.cnki.net/kcms/detail/11.1801.TB.20161115.1550.016.html. YANG B, WANG S L, BI F Y. Simulation and experimental validation for the mold-filling process of VARTM based on mixed grid approach[J/OL]. Materiae Compositae Sinica, http://www.cnki.net/kcms/detail/11.1801.TB.20161115.1550.016.html.
[21] LIN M, HAHN H T, HUH H. A finite element simulation of resin transfer molding based on partial nodal saturation and implicit time integration[J]. Composites Part A:Applied Science and Manufacturing, 1998, 29(5/6):541-550.
[1] 李雅芳, 刘皓, 赵义侠. 基于镀银纱线的电加热织物温度场模拟与电热性能[J]. 材料工程, 2019, 47(2): 68-75.
[2] 杨唐俊, 袁荞龙, 黄发荣. 石英纤维增强含硅芳炔树脂复合材料的界面增强[J]. 材料工程, 2018, 46(8): 148-155.
[3] 张亮, 吴文恒, 卢林, 倪晓晴, 何贝贝, 杨启云, 祝国梁, 顾芸仰. 激光选区熔化热输入参数对Inconel 718合金温度场的影响[J]. 材料工程, 2018, 46(7): 29-35.
[4] 聂恒昌, 徐吉峰, 关志东, 黎增山, 王鑫. 复合材料胶接修理层合板拉伸性能及影响参数[J]. 材料工程, 2017, 45(10): 124-131.
[5] 王亚杰, 王波, 张龙, 马宏毅. 玻璃纤维-铝合金正交层板的拉伸性能研究[J]. 材料工程, 2015, 43(9): 60-65.
[6] 王东宁, 李嘉禄, 焦亚男. 平纹织物三维细观几何模型和织物防弹实验的有限元模拟[J]. 材料工程, 2013, 0(9): 69-74,78.
[7] 任国成, 赵国群. AZ31镁合金等通道转角挤压应变累积均匀性分析及组织性能研究[J]. 材料工程, 2013, 0(10): 13-19.
[8] 樊梦婷, 孙明月, 李殿中. 大型压力机模座热处理过程模拟及工艺优化[J]. 材料工程, 2011, 0(11): 44-50.
[9] 谢宗蕻, 张磊, 苏霓, 马宏毅, 闫丽, 崔海涛. 离位增韧复合材料层合板准静态压入实验研究[J]. 材料工程, 2011, 0(1): 42-46.
[10] 余琨, 蔡志勇, 王晓艳, 史褆, 黎文献. 半连续铸造AZ31B镁合金连续热轧变形行为的数值模拟[J]. 材料工程, 2010, 0(9): 33-39.
[11] 徐尊平, 程南璞, 陈志谦. 7050铝合金等通道转角挤压的有限元模拟及力学性能[J]. 材料工程, 2008, 0(8): 1-4.
[12] 雷力明, 黄旭, 段锐, 曹春晓. 模具外角对高纯铝60°内角等通道转角挤压变形影响的有限元模拟[J]. 材料工程, 2008, 0(8): 57-60.
[13] 方晓强, 李淼泉, 林莺莺. Ti-6Al-4V钛合金等通道转角挤压的有限元模拟[J]. 材料工程, 2007, 0(5): 57-60,65.
[14] 朱亮, 任国松, 龙林, 车洪艳. 双孔微剪切测定铝合金焊接接头的局部本构特性[J]. 材料工程, 2007, 0(10): 18-22.
[15] 覃继宁, 金泉, 张荻, 张国定, 李在哲. 摩擦力在ECAP成形时作用的有限元模拟[J]. 材料工程, 2006, 0(2): 20-22,60.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn