Please wait a minute...
 
2222材料工程  2018, Vol. 46 Issue (10): 70-76    DOI: 10.11868/j.issn.1001-4381.2016.001439
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
超声冲击处理MB8镁合金十字接头的表层组织及疲劳性能
何柏林(), 江明明, 于影霞, 李力
华东交通大学 材料科学与工程学院, 南昌 330013
Microstructure and Fatigue Property of MB8 Magnesium Alloy Cross Welded Joints with Ultrasonic Impact
Bo-lin HE(), Ming-ming JIANG, Ying-xia YU, Li LI
School of Materials Science & Engineering, East China Jiaotong University, Nanchang 330013, China
全文: PDF(3329 KB)   HTML ( 9 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用超声冲击方法对MB8镁合金十字接头焊趾处进行超声冲击处理,对比测试焊态及冲击处理态接头的表层组织和疲劳性能。结果表明:超声冲击处理可以在MB8镁合金焊接接头表面获得纳米晶组织。在循环寿命为2×106条件下,焊态试样的条件疲劳强度为32.07MPa,冲击处理态试样的条件疲劳强度为41.88MPa,提高了30.59%。未冲击接头疲劳断裂大多发生在焊缝缺陷处,冲击处理后的接头则发生在热影响区。超声冲击处理不仅可以大幅提高MB8镁合金十字接头的疲劳寿命,还可以改变接头疲劳断裂位置。此外,热影响区也是MB8镁合金十字接头疲劳断裂的薄弱区域,这与热影响区晶粒粗大有很大的关系。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何柏林
江明明
于影霞
李力
关键词 超声冲击MB8镁合金十字接头疲劳性能断口形貌    
Abstract

Surface treatment was carried out on the weld toe of MB8 magnesium alloy welded joints with ultrasonic impact treatment(UIT) method. The Surface microstructure and the fatigue property of treated and as-welded MB8 magnesium alloy welded joints were investigated. The experimental results show that after ultrasonic impact treatment, nano-crystalline microstructure is obtained by UIT method. Under the condition of the cycle life of 2×106, the conditional fatigue limit of as-welded joints is 32.07MPa, and the conditional fatigue limit of treated joints is 41.88MPa, which is increased by 30.59% than that of as-welded. The fatigue fracture of as-welded joints occurs mostly in the defects of weld zone, and the fatigue fracture of treated joints occurs mostly in the heat-affected zone. The ultrasonic impact treatment can not only increase the fatigue life of the joints, but also can change the fracture position of the samples. In addition, the heat affected zone is also a weak area of the fatigue fracture of the MB8 magnesium alloy cross joints, which is greatly related with the coarse grains in the heat affected zone.

Key wordsultrasonic impact    MB8 magnesium alloy    cross joint    fatigue property    fracture morphology
收稿日期: 2016-11-30      出版日期: 2018-10-17
中图分类号:  TG405  
  TG457.19  
基金资助:国家自然科学基金项目(51265013);江西省自然科学基金项目(20151BAB206007);江西省工业支撑重点项目(20161BBE50072)
通讯作者: 何柏林     E-mail: hebolin@163.com
作者简介: 何柏林(1962-), 男, 教授, 博士, 博士生导师, 主要研究方向为材料强度与断裂及表面强化技术, 联系地址:江西省南昌市华东交通大学材料学院(330013), E-mail:hebolin@163.com
引用本文:   
何柏林, 江明明, 于影霞, 李力. 超声冲击处理MB8镁合金十字接头的表层组织及疲劳性能[J]. 材料工程, 2018, 46(10): 70-76.
Bo-lin HE, Ming-ming JIANG, Ying-xia YU, Li LI. Microstructure and Fatigue Property of MB8 Magnesium Alloy Cross Welded Joints with Ultrasonic Impact. Journal of Materials Engineering, 2018, 46(10): 70-76.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.001439      或      http://jme.biam.ac.cn/CN/Y2018/V46/I10/70
Alloy Mn Ce Al Zn Mg
MB8 1.5-2.5 0.15-0.35 0.2-0.3 0.3 Bal
MB3 0.3-0.6 - 3.5-4.5 0.8-1.4 Bal
Table 1  MB8和MB3镁合金的化学成分(质量分数/%)
Fig.1  MB8十字接头的形状与尺寸
(a)俯视图;(b)主视图
Welding joint type Groove type Current/A Voltage/V Velocity/(mm·s-1) Argon flow rate/(L·min-1) Tungsten electrode diameter/mm
Cross joint Double unilateral "V" 180-200 20-24 1 16-18 4
Table 2  MB8镁合金的焊接工艺参数
Fig.2  MB8镁合金十字接头的金相组织
(a)焊缝及热影响区;(b)热影响区及母材
Fig.3  冲击处理表面组织的TEM明场像(a)和对应选区电子衍射花样图(b)
Fig.4  冲击处理后表层组织内部位错缠结、位错墙和亚晶的TEM图
No Δσmax/MPa N/106cycle Fracture position
UIT 9 57.5 0.161461 Heat-affected zone
UIT 8 55 0.249882 Heat-affected zone
UIT 7 52.5 0.293336 Heat-affected zone
UIT 6 50 0.515894 Heat-affected zone
Untreated 1 47.5 0.296376 Close weld
UIT 5 47.5 0.463591 Heat-affected zone
Untreated 2 45 0.323869 Close weld
UIT 4 45 0.507533 Heat-affected zone
Untreated 3 42.5 0.421946 Close weld
UIT 3 42.5 0.588753 Heat-affected zone
Untreated 4 40 0.511275 Close weld
UIT 2 40 3.392311 Heat-affected zone
Untreated 5 37.5 0.700366 Close weld
UIT 1 37.5 10.0 No break
Untreated 6 35 0.565799 Close weld
Untreated 7 32.5 1.465848 Close weld
Untreated 8 30 2.845959 Close weld
Untreated 9 27.5 6.0 No break
Untreated 10 25 10.0 No break
Table 3  两组试样的疲劳实验数据
Fig.5  焊态及超声冲击态试样的S-N曲线
Sample m lgCm Δσ/MPa lgCk SD
Untreated 6.015 15.36 32.07 4.564 0.5435
UIT 10.4 23.17 41.88 4.283 0.5725
Table 4  MB8镁合金十字接头S-N曲线对应的参数
Fig.6  接头疲劳寿命与应力的关系
Fig.7  冲击态(a)和焊态(b)接头断裂位置
Fig.8  焊态(1)和冲击态(2)疲劳断口的表面形貌
(a)疲劳裂纹源区;(b)扩展区;(c)瞬断区
Fig.9  疲劳断口中的解理台阶(a)和二次裂纹(b)
1 初雅杰, 李晓泉, 吴申庆, 等. 热压形变参数对AZ31镁合金接头微观组织和力学性能的影响[J]. 材料工程, 2014, (6): 35- 39.
1 CHU Y J , LI X Q , WU S Q , et al. Influence of hot compression deformation on microstructure and mechanical properties of welded joints for AZ31 magnesium alloy[J]. Journal of Materials Engineering, 2014, (6): 35- 39.
2 邓海鹏, 何柏林. MB8变形镁合金超声疲劳试样解析设计[J]. 航空材料学报, 2016, 36 (4): 64- 70.
2 DENG H P , HE B L . Design of ultrasonic fatigue specimen of MB8 wrought magnesium alloy by analytic method[J]. Journal of Aeronautical Materials, 2016, 36 (4): 64- 70.
3 宋广胜, 陈强强, 徐勇, 等. AZ31镁合金室温拉伸微观变形机制EBSD原位跟踪研究[J]. 材料工程, 2016, 44 (4): 1- 8.
doi: 10.3969/j.issn.1673-1433.2016.04.001
3 SONG G S , CHEN Q Q , XU Y , et al. Deformation micro-mechanism of AZ31 Mg alloy during tension at room temperature by EBSD in-situ tracking[J]. Journal of Materials Engineering, 2016, 44 (4): 1- 8.
doi: 10.3969/j.issn.1673-1433.2016.04.001
4 秦仁耀, 孙兵兵, 肇恒跃, 等. ZM5镁合金TIG焊接接头组织与力学性能[J]. 材料工程, 2016, 44 (6): 92- 97.
4 QIN R Y , SUN B B , ZHAO H Y , et al. Microstructure and mechanical properties of TIG weld joint of ZM5 magnesium alloy[J]. Journal of Materials Engineering, 2016, 44 (6): 92- 97.
5 于影霞, 何柏林. 镁合金焊接接头表面自纳米化及其疲劳性能研究现状与展望[J]. 材料导报, 2013, 27 (9): 121- 124.
5 YU Y X , HE B L . Research reality and prospect about the surface self-nanocrystallization of magnesium alloy weld joints and its fatigue properties[J]. Materials Review, 2013, 27 (9): 121- 124.
6 王文先, 马丽莉, 慕伟, 等. AZ31B镁合金TIG焊焊接接头的疲劳性能[J]. 机械工程学报, 2007, 43 (10): 161- 165.
doi: 10.3321/j.issn:0577-6686.2007.10.030
6 WANG W X , MA L L , MU W , et al. Fatigue behavior of AZ31B magnesium alloy joint with TIG-welding[J]. Chinese Journal of Mechanical Engineering, 2007, 43 (10): 161- 165.
doi: 10.3321/j.issn:0577-6686.2007.10.030
7 张兰. AZ31B镁合金焊接接头疲劳性能改善方法研究[D].太原: 太原理工大学, 2010.
7 ZHANG L. Study on the improving methods of fatigue property for AZ31B magnesium alloy welded joint[D].Taiyuan: Taiyuan University of Technology, 2010.
8 ZHANG J W , WANG W X , ZHANG L . Improving the fatigue property of welded joints for AZ31 magnesium alloy by ultrasonic peening treatment[J]. China Welding, 2008, (2): 20- 26.
9 成明华.镁合金焊接接头疲劳性能的研究[D].沈阳: 沈阳工业大学, 2009.
9 CHENG M H. Investigation of fatigue endurance for magnesium alloy weld joint[D].Shenyang: Shenyang University of Technology, 2009.
10 ROY S , FISHER J W , YEN B T . Fatigue resistance of welded details enhanced by ultrasonic impact[J]. International Journal of Fatigue, 2003, 25 (12): 1239- 1247.
11 何柏林, 于影霞, 余皇皇, 等. 超声冲击对转向架焊接十字接头表层组织及疲劳性能的影响[J]. 焊接学报, 2013, 34 (8): 51- 54.
11 HE B L , YU Y X , YU H H , et al. Effect of ultrasonic impact on the surface microstructure and fatigue properties of welded cross joint for train bogie[J]. Transactions of the China Welding Institution, 2013, 34 (8): 51- 54.
12 黄丽婷, 陈明和, 谢兰生, 等. 超声冲击载荷对CP3钛合金焊接接头残余应力的影响[J]. 航空材料学报, 2014, 34 (1): 52- 55.
doi: 10.3969/j.issn.1001-4381.2014.01.010
12 HUANG L T , CHEN M H , XIE L S , et al. Influence of ultrasonic impact load on residual stresses distribution of welded joints for CP3 titanium alloy[J]. Journal of Aeronautical Materials, 2014, 34 (1): 52- 55.
doi: 10.3969/j.issn.1001-4381.2014.01.010
13 王东坡, 龚宝明, 吴世品, 等. 焊接接头与结构疲劳延寿技术研究进展综述[J]. 华东交通大学学报, 2016, 33 (6): 1- 14.
13 WANG D P , GONG B M , WU S P , et al. Research review on fatigue life improvement of welding joint and structure[J]. Journal of East China Jiaotong University, 2016, 33 (6): 1- 14.
14 HE B L , YU Y X , XIA S S , et al. Effect of ultrasonic impact treating on wear resistance and microhardness of AZ91D magnesium alloy[J]. Rare Metal Materials and Engineering, 2017, 46 (1): 17- 22.
15 李想, 邓彩艳, 龚宝明, 等. 5A06铝合金焊接接头在超长寿命区间的疲劳性能[J]. 焊接学报, 2016, 37 (2): 59- 63.
15 LI X , DENG C Y , GONG B M , et al. Super-long life fatigue property of 5A06 aluminum alloy welded joint[J]. Transactions of the China Welding Institution, 2016, 37 (2): 59- 63.
16 张华, 林三宝, 吴林, 等. AZ31镁合金搅拌摩擦焊接头断裂机制[J]. 材料工程, 2005, (1): 33- 36.
doi: 10.3969/j.issn.1001-4381.2005.01.008
16 ZHANG H , LIN S B , WU L , et al. Fracture mechanism of friction stir welded AZ31 magnesium alloy[J]. Journal of Materials Engineering, 2005, (1): 33- 36.
doi: 10.3969/j.issn.1001-4381.2005.01.008
17 高明, 曾晓雁, 唐海国. MB8镁合金CO2激光焊接工艺及接头性能[J]. 中国有色金属学报, 2011, 21 (5): 939- 944.
17 GAO M , ZENG X Y , TANG H G . Process characterization and joint mechanical properties of CO2 laser welding of MB8 magnesium alloy[J]. The Chinese Journal of Nonferrous Metals, 2011, 21 (5): 939- 944.
18 张力. 浅析表面纳米化对金属疲劳性能的影响[J]. 中国科技信息, 2006, (9): 302- 303.
doi: 10.3969/j.issn.1001-8972.2006.09.157
18 ZHANG L . Effect of surface nanocrystallization on fatigue properties of metals[J]. China Science and Technology Information, 2006, (9): 302- 303.
doi: 10.3969/j.issn.1001-8972.2006.09.157
19 TSUJIKAWA M , SOMEKAWA H , HIGASHI K . Fatigue of welded magnesium alloy joints[J]. Materials Transactions, 2004, 45 (2): 419- 422.
doi: 10.2320/matertrans.45.419
20 SHIH T S , LIU W S , CHEN Y J . Fatigue of as-extruded AZ61A magnesium alloy[J]. Materials Science and Engineering:A, 2002, 325, 152- 162.
doi: 10.1016/S0921-5093(01)01411-3
[1] 杨洋, 陈新文, 孙炜, 马丽婷, 王翔, 郭广平. 基于数字图像相关方法的CFRP层合板高温压缩性能实验研究[J]. 材料工程, 2021, 49(11): 62-72.
[2] 王志远, 邢志国, 王海斗, 单德彬. 非金属夹杂物特性对钢铁材料疲劳性能影响的研究进展[J]. 材料工程, 2020, 48(5): 1-12.
[3] 赵慧生, 陈国清, 盖鹏涛, 李志强, 周文龙, 付雪松. 拉-拉疲劳载荷下钛合金湿喷丸的残余应力松弛及再次喷丸工艺[J]. 材料工程, 2020, 48(5): 136-143.
[4] 韩梅, 谢洪吉, 李嘉荣, 董建民, 岳晓岱, 喻健, 杨亮. 再结晶对DD6单晶高温合金轴向高周疲劳性能的影响[J]. 材料工程, 2019, 47(6): 161-168.
[5] 山泉, 张亚峰, 张哲轩, 李祖来, 蒋业华, 王鹏飞. 钨含量对WCP/钢基表层复合材料压缩性能及热疲劳行为的影响[J]. 材料工程, 2019, 47(2): 115-121.
[6] 王驰, 冉广, 雷鹏辉, 黄金华. SA508 Gr.3 Cl.1钢的疲劳和高温拉伸性能[J]. 材料工程, 2018, 46(5): 151-158.
[7] 倪永恒, 朱有利, 侯帅. 超声冲击处理时间对17CrNiMo6钢表层组织细化与性能的影响[J]. 材料工程, 2018, 46(11): 155-160.
[8] 孙大智, 薛克敏, 董力源, 李萍. 扭转圈数对高压扭转SiCP/Al复合材料界面扩散行为和组织性能的影响[J]. 材料工程, 2017, 45(7): 13-18.
[9] 胡春燕, 刘新灵, 陶春虎, 曹春晓. 气膜孔分布对DD6单晶高温合金高周疲劳断裂行为的影响[J]. 材料工程, 2017, 45(4): 84-89.
[10] 田文扬, 刘奋, 韦春华, 夏卫生, 杨云珍. DP980高强钢动态拉伸力学行为[J]. 材料工程, 2017, 45(3): 47-53.
[11] 张晓雯, 吴南, 张旋, 马丽婷, 厉蕾. 透明聚碳酸酯材料疲劳断裂行为[J]. 材料工程, 2017, 45(11): 30-35.
[12] 马少华, 王勇刚, 回丽, 许良. 湿热环境对碳纤维环氧树脂复合材料弯曲性能的影响[J]. 材料工程, 2016, 44(2): 81-87.
[13] 方光武, 高希光, 宋迎东. 针刺C/SiC复合材料拉-压疲劳特性与失效机理[J]. 材料工程, 2016, 44(11): 78-82.
[14] 吕世泉, 何国球, 沈月, 田丹丹, 刘晓山, 林国斌, 任敬东, 胡杰. 菱形加载路径下35CrMoA钢的微动疲劳行为[J]. 材料工程, 2016, 44(1): 96-102.
[15] 王昌盛, 熊江涛, 李京龙, 李鹏, 张赋升, 杨俊. 2024铝合金搅拌摩擦焊焊缝区疲劳过程中的温度演变[J]. 材料工程, 2015, 43(9): 53-59.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn