Please wait a minute...
 
2222材料工程  2018, Vol. 46 Issue (9): 152-159    DOI: 10.11868/j.issn.1001-4381.2016.001446
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
应力载荷作用下5A06铝合金薄板材料在盐水中腐蚀行为
马慧媛1, 刘慧丛1, 石文静2,*(), 施丽铭2, 李卫平1,*(), 朱立群1
1 北京航空航天大学 材料科学与工程学院, 北京 100191
2 北京空间飞行器总体设计部, 北京 100094
Corrosion Behaviors of 5A06 Aluminum Alloy Sheet Under Stress Loading in Brine Solution
Hui-yuan MA1, Hui-cong LIU1, Wen-jing SHI2,*(), Li-ming SHI2, Wei-ping LI1,*(), Li-qun ZHU1
1 School of Materials Science and Engineering, Beihang University, Beijing 100191, China
2 Beijing Institute of Spacecraft System Engineering, Beijing 100094, China
全文: PDF(6901 KB)   HTML ( 11 )  
输出: BibTeX | EndNote (RIS)      
摘要 

以铝合金薄板在受载及盐水作用下可能存在的腐蚀加速问题为研究背景,用两点弯曲法探讨1.8mm厚5A06铝合金薄板在50℃的3.5% NaCl溶液中的腐蚀行为,研究发现施加载荷可以促进铝合金薄板材料的腐蚀。对不同腐蚀时期的裂纹形貌、金相组织以及元素成分等进行分析发现:在盐水环境中应力载荷对材料腐蚀的促进体现在与腐蚀程度成正比的关系,受铝合金材料内固溶强化相的影响,材料阳极区优先溶解,形成点蚀坑;另外,应力载荷会导致铝合金薄板表面氧化膜撕裂,并促使腐蚀裂纹扩展。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马慧媛
刘慧丛
石文静
施丽铭
李卫平
朱立群
关键词 5A06铝合金薄板应力载荷盐水两点弯曲腐蚀行为    
Abstract

Based on the problem of corrosion acceleration possibly existing in aluminum alloy sheets under the influence of both loading and brine solution, the corrosion behavior of 5A06 aluminum alloy sheets with the thickness of 1.8mm by the two-point bending method in 3.5% NaCl aqueous solution at 50℃ was discussed.It is found that stress actually can promote the speed of corrosion in these aluminum alloy sheets.Crack morphologies, metallurgical structures and elemental compositions in different corrosion periods of these samples were analyzed.The results show:firstly, large stress will cause severe corrosion, which proves that stress can accelerate the corrosion; secondly, the solid solution strengthening phase in aluminum alloy can cause the anode areas preferentially dissolve, resulting in the formation of corrosion pits.Furthermore, stress can result in tearing of oxide film on the aluminum alloy surface, and facilitate corrosion crack propagation.

Key words5A06 aluminum alloy sheet    stress loading    brine solution    two-point bending    corrosion behavior
收稿日期: 2016-12-02      出版日期: 2018-09-19
中图分类号:  TG172.5  
基金资助:国家自然科学基金(51401011)
通讯作者: 石文静,李卫平     E-mail: daizi8429@163.com;liweiping@buaa.edu.cn
作者简介: 李卫平(1972-), 女, 教授, 博士, 从事腐蚀与防护以及功能涂层的研究, 联系地址:北京市海淀区学院路37号北京航空航天大学材料科学与工程学院(100191), E-mail: liweiping@buaa.edu.cn
石文静(1984-), 女, 高级工程师, 博士, 研究方向为航天器结构设计与仿真、结构疲劳可靠性、复合材料, 联系地址:北京市海淀区友谊路102号院31号楼2单元201(100094), E-mail: daizi8429@163.com
引用本文:   
马慧媛, 刘慧丛, 石文静, 施丽铭, 李卫平, 朱立群. 应力载荷作用下5A06铝合金薄板材料在盐水中腐蚀行为[J]. 材料工程, 2018, 46(9): 152-159.
Hui-yuan MA, Hui-cong LIU, Wen-jing SHI, Li-ming SHI, Wei-ping LI, Li-qun ZHU. Corrosion Behaviors of 5A06 Aluminum Alloy Sheet Under Stress Loading in Brine Solution. Journal of Materials Engineering, 2018, 46(9): 152-159.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.001446      或      http://jme.biam.ac.cn/CN/Y2018/V46/I9/152
Si Cu Mg Zn Mn Ti Be Fe Al
≤0.40 ≤0.10 5.8-6.8 ≤0.20 0.50-0.8 0.02-0.1 0.0001-0.0005 0-0.400 Bal
Table 1  5A06铝合金的化学成分(质量分数/%)[26]
Fig.1  两点弯曲法
(a)预变形试样夹具;(b)尼龙虎钳预应变加载示意图
Fig.2  1.8mm厚5A06铝合金试样在无应力载荷下(1)与应力载荷下(2)经过不同时间在盐水中的腐蚀形貌
(a)1d;(b)20d;(c)110d
Fig.3  1.8mm厚5A06铝合金应力载荷试样经过不同时间在盐水中腐蚀形貌的局部放大图
(a)1d;(b)20d;(c)110d
Fig.4  5A06铝合金薄板1.8mm试样金相组织形貌
Fig.5  5A06铝合金薄板1.8mm无应力试样110d腐蚀形貌
(a)腐蚀坑形貌; (b)腐蚀坑端部; (c)腐蚀坑内部
Fig.6  5A06铝合金薄板1.8mm应力载荷试样110d腐蚀形貌
(a)裂纹形貌; (b)裂纹端部; (c)裂纹内部
Fig.7  5A06铝合金薄板1.8mm试样腐蚀坑及裂纹的内部与端部点能谱分析结果
(a)无应力试样;(b)施加应力载荷试样
Position O Mg Al Si Mn
A 3.09 4.90 91.09 0.13 0.79
B 5.29 5.41 87.81 0.89 0.60
C 4.22 5.69 87.61 1.50 0.98
D 8.13 4.98 80.37 5.98 0.54
Table 2  5A06铝合金裂纹内部及尖端元素分布(质量分数%)
Fig.8  5A06铝合金1.8mm试样腐蚀1d的裂纹形貌
(a)点蚀;(b)裂纹发展;(c)裂纹扩展;(d)裂纹成型
Fig.9  光学显微镜观测应力载荷试样腐蚀1d形貌
(a)局部试样形貌;(b)中区; (c)观察区
1 彭非, 楚浩, 杨兵. 5A06铝合金油箱氩弧焊热影响区裂纹分析及预防措施[J]. 电焊机, 2007, 37 (7): 34- 37.
doi: 10.3969/j.issn.1001-2303.2007.07.010
1 PENG F , CHU H , YANG B . Analysis and preventive of fracture in 5A06 aluminium alloy fuel tank with manual TIG welding technology[J]. Electric Welding Machine, 2007, 37 (7): 34- 37.
doi: 10.3969/j.issn.1001-2303.2007.07.010
2 方昆凡. 工程材料手册:有色金属材料卷[M]. 北京: 北京出版社, 2002.
3 周万盛, 姚君山. 铝及铝合金的焊接[M]. 北京: 机械工业出版社, 2006: 3- 4.
4 林钢, 林慧国, 赵玉涛. 铝合金应用手册[M]. 北京: 机械工业出版社, 2006.
5 ZHAO T , JIANG Y . Fatigue of 7075-T651 aluminum alloy[J]. International Journal of Fatigue, 2008, 30 (5): 834- 849.
doi: 10.1016/j.ijfatigue.2007.07.005
6 HE Z , FAN X , XU Y . Investigation on the formability of 5A06 sheet for rapid gas forming[J]. Rare Metal Materials and Engineering, 2011, 40 (s3): 144- 147.
7 CHU W Y , HSIAO C M , WANG J W . Stress corrosion cracking of an aluminum alloy under compressive stress[J]. Metallurgical and Materials Transactions A, 1985, 16 (9): 1663- 1670.
doi: 10.1007/BF02663022
8 CHU W Y , HSIAO C M , XU B J . Stress corrosion cracking in high strength steel under mode Ⅲ loading[J]. Metallurgical and Materials Transactions A, 1986, 17 (4): 711- 716.
doi: 10.1007/BF02643992
9 SANO Y , OBATA M , KUBO T , et al. Retardation of crack initiation and growth in austenitic stainless steels by laser peening without protective coating[J]. Materials Science and Engineering:A, 2006, 417 (1/2): 334- 340.
10 乔利杰, 刘锐, 肖纪美. 黄铜应力腐蚀裂纹与应力分量的关系[J]. 金属学报, 1991, 27 (6): 110- 114.
10 QIAO L J , LIU R , XIAO J M . Correlation between stress components and stress corrosion cracks of brass[J]. Acta Metallurgica Sinica, 1991, 27 (6): 110- 114.
11 ERZURUM S , YEH H C . The effect of environment, cold work, and crystallography on the stress corrosion cracking of C36000 alloy[J]. Corrosion, 1983, 39 (5): 161- 166.
doi: 10.5006/1.3580831
12 FOURNIER L , SAVOIE M , DELAFOSSE D . Influence of localized deformation on A-286 austenitic stainless steel stress corrosion cracking in PWR primary water[J]. Journal of Nuclear Materials, 2007, 366 (1/2): 187- 197.
13 HUIZHONG L I , ZHANG X , CHEN M , et al. Effect of pre-deformation on the stress corrosion cracking susceptibility of aluminum alloy 2519[J]. Rare Metals, 2007, 26 (4): 385- 390.
doi: 10.1016/S1001-0521(07)60233-2
14 杨青, 朱立群, 李卫平, 等. 不同厚度铝合金试样的应力腐蚀开裂特性研究[J]. 稀有金属, 2014, (4): 581- 588.
14 YANG Q , ZHU L Q , LI W P , et al. Stress corrosion cracking characteristics of aluminum alloy specimens with different thicknesses[J]. Chinese Journal of Rare Metals, 2014, 38 (4): 581- 588.
15 HUANG X , PAN Q , LI B , et al. Microstructure, mechanical properties and stress corrosion cracking of Al-Zn-Mg-Zr alloy sheet with trace amount of Sc[J]. Journal of Alloys & Compounds, 2015, 650, 805- 820.
16 POPOVIĆ M , ROMHANJI E . Stress corrosion cracking susceptibility of Al-Mg alloy sheet with high Mg content[J]. Journal of Materials Processing Technology, 2002, 125/126 (2): 275- 280.
17 刘远勇, 张晓云, 裴和中, 等. 7B04铝合金应力腐蚀敏感性研究[J]. 材料工程, 2010, (2): 33- 36.
doi: 10.3969/j.issn.1001-4381.2010.02.009
17 LIU Y Y , ZHANG X Y , PEI H Z , et al. Research on the properties of stress corrosion crack for 7B04 alloy[J]. Journal of Materials Engineering, 2010, (2): 33- 36.
doi: 10.3969/j.issn.1001-4381.2010.02.009
18 VENUGOPAL A , NARAYANAN P R , SHARMA S C . Evolution of microstructure and stress corrosion cracking behavior of AA2219 plate to ring weld joints in 3.5wt Pct NaCl solution[J]. Metallurgical and Materials Transactions A, 2016, 47 (4): 1- 14.
19 HOLROYD N J H , SCAMANS G M . Stress corrosion cracking in Al-Zn-Mg-Cu aluminum alloys in saline environments[J]. Metallurgical and Materials Transactions A, 2013, 44 (3): 1230- 1253.
doi: 10.1007/s11661-012-1528-3
20 PENG G S , CHEN K H , CHEN S Y , et al. Effect of the deformation on the stress-corrosion cracking of Al-Zn-Mg-Cu alloys[J]. Materials & Corrosion, 2012, 63 (63): 254- 258.
21 JIANG J T , XIAO W Q , YANG L , et al. Ageing behavior and stress corrosion cracking resistance of a non-isothermally aged Al-Zn-Mg-Cu alloy[J]. Materials Science and Engineering:A, 2014, 605, 167- 175.
doi: 10.1016/j.msea.2014.03.023
22 RAMAN R K S , RIHAN R , IBRAHIM R N . Validation of a novel approach to determination of threshold for stress corrosion cracking (KISCC)[J]. Materials Science and Engineering:A, 2007, 452, 652- 656.
23 HU J , CHEN C S , XU L X , et al. Effect of whisker orientation on the stress corrosion cracking behavior of alumina borate whisker reinforced pure Al composite[J]. Materials Letters, 2002, 56 (5): 642- 646.
doi: 10.1016/S0167-577X(02)00569-4
24 KNIGHT S P , POHL K , HOLROYD N J H , et al. Some effects of alloy composition on stress corrosion cracking in Al-Zn-Mg-Cu alloys[J]. Corrosion Science, 2015, 98, 50- 62.
doi: 10.1016/j.corsci.2015.05.016
25 LIU Z , WU W , HAO W , et al. Stress corrosion cracking mechanism of 304L under a glycine environment[J]. Corrosion, 2015, 72 (3): 323- 341.
26 中国航空材料手册委员会. 中国航空材料手册:3铝合金镁合金钛合金[M]. 北京: 中国标准出版社, 1989.
27 柏立敬, 冯再新, 张治民. 5A06铝合金变形工艺参数与显微组织关系实验研究[J]. 有色金属加工, 2007, 36 (6): 14- 16.
doi: 10.3969/j.issn.1671-6795.2007.06.004
27 BAI L J , FENG Z X , ZHANG Z M . Experimental research on relationship between deformation factors and microstructures of 5A06 aluminum alloy[J]. Nonferrous Metals Processing, 2007, 36 (6): 14- 16.
doi: 10.3969/j.issn.1671-6795.2007.06.004
28 TURNBULL A . The solution composition and electrode potential in pits, crevices and cracks[J]. Corrosion Science, 1983, 23 (8): 833- 870.
doi: 10.1016/0010-938X(83)90014-8
29 左景伊. 应力腐蚀破裂[M]. 西安: 西安交通大学出版社, 1985.
30 钟群鹏, 周煜, 张峥. 裂纹学[M]. 北京: 高等教育出版社, 2014.
[1] 刘悦, 吴红艳, 杜林秀. 铁路车辆用V-N-Cr微合金化Q690高强耐候钢组织性能和腐蚀行为[J]. 材料工程, 2021, 49(4): 111-119.
[2] 黄希, 李小燕, 方晓东, 熊子成, 彭奕超, 韦丽华. 容错事故燃料包壳用FeCrAl合金的研究进展[J]. 材料工程, 2020, 48(3): 19-33.
[3] 常海, 郭雪刚, 文磊, 金莹. SiC纳米颗粒对TC4钛合金微弧氧化涂层组织结构及耐蚀性能的影响[J]. 材料工程, 2019, 47(3): 109-115.
[4] 赵燕春, 毛瑞鹏, 袁小鹏, 许丛郁, 蒋建龙, 孙浩, 寇生中. Ti基金属玻璃复合材料的腐蚀行为[J]. 材料工程, 2018, 46(1): 25-30.
[5] 胥聪敏, 杨东平, 张灵芝, 史立强, 李辉辉. SRB对X100钢在鹰潭土壤模拟溶液中腐蚀行为的影响[J]. 材料工程, 2015, 43(6): 71-78.
[6] 盛典, 张宝林, 涂志江, 谢松伯, 王茗. MPEG修饰的纳米氧化铁粒子的合成及清洗工艺[J]. 材料工程, 2015, 43(2): 47-52.
[7] 朱敏, 刘智勇, 杜翠薇, 李晓刚, 王丽叶. 交流电对X80钢在酸性土壤环境中腐蚀行为的影响[J]. 材料工程, 2015, 43(2): 85-90.
[8] 胡侨, 张敏, 李海飞, 尹恩怀, 逄淑杰, 张涛. Ti-Zr-Cu-Co-Sn-Si块体非晶合金的形成及生物腐蚀行为和力学性能[J]. 材料工程, 2014, 0(6): 18-21.
[9] 朱敏, 杜翠薇, 李晓刚, 刘智勇, 赵天亮, 李建宽, 胡杰珍. 交流电频率对X65钢在CO32-/HCO3-溶液中腐蚀行为的影响[J]. 材料工程, 2014, 0(11): 85-89.
[10] 刘栓, 孙虎元, 孙立娟, 范汇吉, 刘增文. 海水中Zn(OH)2对镀锌钢腐蚀行为的影响[J]. 材料工程, 2013, (8): 60-64.
[11] 王庆娟, 张平平, 罗雷, 杜忠泽. ECAP制备超细晶铜在0.5mol/L NaCl溶液中的腐蚀行为[J]. 材料工程, 2013, 0(5): 33-37,43.
[12] 王莹, 俞宏英, 程远, 单海涛, 孙冬柏. X80钢在不同土壤模拟溶液中的腐蚀行为[J]. 材料工程, 2012, 0(1): 25-28.
[13] 张明灿, 曾人杰. 注浆成型-常温常压干燥制备隔热块体材料[J]. 材料工程, 2011, 0(9): 33-38.
[14] 胥聪敏. X80钢在霍尔果斯水饱和土壤中的短期腐蚀行为研究[J]. 材料工程, 2011, 0(3): 78-81,86.
[15] 于萍, 张金岭, 许红, 张长桥. 表面不均匀性黑斑的钢芯铝绞线模拟海洋环境5年腐蚀行为的研究[J]. 材料工程, 2010, 0(3): 46-50,55.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn