Pre-lithiated multiwalled carbon nanotube anode was prepared by internal short approach(IS) for 5min, 30min and 60min. Lithium ion capacitors (LICs) were assembled using pre-lithiated multiwalled carbon nanotubes as cathode and activated carbon(AC) as anode. The structure characterization of multiwalled carbon nanotubes and electrodes were investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The electrochemical performance of pre-lithiated multiwalled carbon nanotube electrodes and pure multiwalled carbon nanotubes electrodes were tested by galvanostatic charge/discharge and electrochemical impedance spectrum. The electrochemical tests indicate that the charge-discharge performance of LIC is greatly improved by pre-lithiation of multiwalled carbon nanotubes. The energy density reaches about 4 times over conventional electric double-layer capacitors (EDLCs) at the current density of 100mA/g. The LICs achived a specific capacitance of 57F/g at the current density of 100mA/g with 60min pre-lithiatiation process. The maximum energy density and power density reach 90Wh/kg and 4130W/kg respectively in the current range of 100-3200mA/g. The capacity retention rate remains more than 85% after 1000 cycles. The LIC shows excellent supercapacitor performance.
MILLER J R , SIMON P . Materials science.electrochemical capacitors for energy management[J]. Science, 2008, 321 (5889): 651- 652.
doi: 10.1126/science.1158736
2
KRAUSE A , KOSSYREV P , OLJACA M , et al. Electroch-emical double layer capacitor and lithium-ion capacitor based on carbon black[J]. Journal of Power Sources, 2011, 196 (20): 8836- 8842.
doi: 10.1016/j.jpowsour.2011.06.019
3
RAND D A J . A journey on the electrochemical road to sustainability[J]. Journal of Solid State Electrochemistry, 2011, 15 (7): 1579- 1622.
4
PASQUIER A D , PLITZ I , GURAL J , et al. Power-ion battery:bridging the gap between Li-ion and supercapacitor chemistries[J]. Journal of Power Sources, 2004, 136 (1): 160- 170.
doi: 10.1016/j.jpowsour.2004.05.023
5
AMATUCCI G G , BADWAY F , PASQUIER A D , et al. An asymmetric hybrid nonaqueous energy storage cell[J]. Journal of the Electrochemical Society, 2001, 148 (8): A930- A939.
doi: 10.1149/1.1383553
6
PASQUIER A D , PLITZ I , MENOCAL S , et al. A comparative study of Li-ion battery, supercapacitor and nonaqueous asymmetric hybrid devices for automotive applications[J]. Journal of Power Sources, 2003, 115 (1): 171- 178.
doi: 10.1016/S0378-7753(02)00718-8
7
DAHN J R , STEEL J A . Energy and capacity projections for practical dual-graphite cells[J]. Journal of the Electrochemical Society, 2000, 147 (3): 899- 901.
doi: 10.1149/1.1393289
8
YOSHINO A , TSUBATA T , SHIMOYAMADA M , et al. Dev-elopment of a lithium-type advanced energy storage device[J]. Journal of the Electrochemical Society, 2004, 151 (12): A2180- A2182.
doi: 10.1149/1.1813671
9
WOO S W , DOKKO K , NAKANO H , et al. Bimodal porous carbon as a negative electrode material for lithium-ion capacitors[J]. Electrochemistry, 2007, 75 (8): 635- 640.
doi: 10.5796/electrochemistry.75.635
10
LEE S W , YABUUCHI N , GALLANT B M , et al. High-pow-er lithium batteries from functionalized carbon-nanotube electrodes[J]. Nature Nanotechnology, 2010, 5 (7): 531- 537.
doi: 10.1038/nnano.2010.116
11
TROPY N L, CAO W, ZHENG J P. Comparison study of various anode materials for Li-ion capacitors[C]//The Electr-ochemical Society, 2014(2): 227.
12
ZHANG P, MA J, MANI S, et al. High performance anode material for lithium-ion battery: US7722991[P]. 2010.
13
BYEON A , GLUSHENKOV A M , ANASORI B , et al. Lit-hium-ion capacitors with 2D Nb2CTx, (MXene)-carbon nano-tube electrodes[J]. Journal of Power Sources, 2016, 326, 686- 694.
doi: 10.1016/j.jpowsour.2016.03.066
14
HSIEH C L , TSAI D S , CHIANG W W , et al. A composite electrode of tin dioxide and carbon nanotubes and its role as negative electrode in lithium ion hybrid capacitor[J]. Electr-ochimica Acta, 2016, 209, 332- 340.
doi: 10.1016/j.electacta.2016.05.090
15
KHOMENKO V , RAYMUNDO-PIÑERO E , BÉGUIN F . High-energy density graphite/AC capacitor in organic electrolyte[J]. Journal of Power Sources, 2008, 177 (2): 643- 651.
doi: 10.1016/j.jpowsour.2007.11.101
16
YANG J , ZHOU X Y , JIE L I , et al. Carbonaceous mesophase spherule/activated carbon composite as anode materials for super lithium ion capacitors[J]. Journal of Central South University of Technology, 2011, 18 (4): 972- 977.
doi: 10.1007/s11771-011-0789-0
17
REN J J , SU L W , QIN X , et al. Pre-lithiated graphene nanosheets as negative electrode materials for Li-ion capacitors with high power and energy density[J]. Journal of Power Sour-ces, 2014, 264 (264): 108- 113.
18
JIN Z , LIU X , JING W , et al. Different types of pre-lithiated hard carbon as negative electrode material for lithium-ion capac-itors[J]. Electrochimica Acta, 2016, 187, 134- 142.
doi: 10.1016/j.electacta.2015.11.055
19
SIVAKKUMAR S R , PANDOLFO A G . Evaluation of lithium-ion capacitors assembled with pre-lithiated graphite anode and activated carbon cathode[J]. Electrochimica Acta, 2012, 65, 280- 287.
doi: 10.1016/j.electacta.2012.01.076
20
KONNO H , KASASHIMA T , AZUMI K . Application of Si-C-O glass-like compounds as negative electrode materials for lithium hybrid capacitors[J]. Journal of Power Sources, 2009, 191 (2): 623- 627.
doi: 10.1016/j.jpowsour.2009.02.091
21
ZHANG S , LI C , ZHANG X , et al. High performance lithium-ion hybrid capacitors employing Fe3O4-graphene composite anode and activated carbon cathode[J]. ACS Appl Mater Inter-faces, 2017, 9 (20): 17136- 17144.
doi: 10.1021/acsami.7b03452
22
PARK M S , LIM Y G , KIM J H , et al. A novel lithium-doping approach for an advanced lithium ion capacitor[J]. Advanced Energy Materials, 2011, 1 (6): 1002- 1006.
doi: 10.1002/aenm.201100270
23
GOURDIN G , SMITH P H , JIANG T , et al. Lithiation of amorphous carbon negative electrode for Li ion capacitor[J]. Journal of Electroanalytical Chemistry, 2013, 688 (4): 103- 112.
24
WANG Y , LIU C , PAN R , et al. Modeling and state-of-charge prediction of lithium-ion battery and ultracapacitor hybrids with a co-estimator[J]. Energy, 2017, 121, 739- 750.
doi: 10.1016/j.energy.2017.01.044
25
CAI M , SUN X , CHEN W , et al. Performance of lithium-ion capacitors using pre-lithiated multiwalled carbon nanotubes/graphite composite as negative electrode[J]. Journal of Materials Science, 2018, 53 (1): 749- 758.
doi: 10.1007/s10853-017-1524-5
26
PARK H , KIM M , XU F , et al. In situ synchrotron wide-angle X-ray scattering study on rapid lithiation of graphite anode via direct contact method for Li-ion capacitors[J]. Journal of Power Sources, 2015, 283, 68- 73.
doi: 10.1016/j.jpowsour.2015.01.193
27
KIM M , XU F , LEE J , et al. A fast and efficient pre-doping approach to high energy density lithium-ion hybrid capacitors[J]. Journal of Materials Chemistry A, 2014, 2 (26): 10029- 10033.
doi: 10.1039/C4TA00678J
28
SUN X G , LIU Z H , LI N , et al. Carbon nanotube paper as anode for flexible lithium-ion battery[J]. Nano Brief Reports & Reviews, 2016, 11 (11): 1650120- 1.
29
AI G , WANG Z , ZHAO H , et al. Scalable process for application of stabilized lithium metal powder in Li-ion batteries[J]. Journal of Power Sources, 2016, 309, 33- 41.
doi: 10.1016/j.jpowsour.2016.01.061
30
ZHANG J , SHI Z , WANG J , et al. Composite of mesocarbon microbeads/hard carbon as anode material for lithium ion capa-citor with high electrochemical performance[J]. Journal of Electroanalytical Chemistry, 2015, 747, 20- 28.
doi: 10.1016/j.jelechem.2015.03.035
31
ZHANG J , SHI Z , WANG C . Effect of pre-lithiation degrees of mesocarbon microbeads anode on the electrochemical perfor-mance of lithium-ion capacitors[J]. Electrochimica Acta, 2014, 125 (12): 22- 28.
32
DOKKO K , FUJITA Y , MOHAMEDI M , et al. Electro-chemical impedance study of Li-ion insertion into mesocarbon microbead single particle electrode:Part Ⅱ[J]. Disordered carbon. Electrochimica acta, 2001, 47 (6): 933.
doi: 10.1016/S0013-4686(01)00809-X
33
KÖTZ R , CARLEN M . Principles and applications of electro-chemical capacitors[J]. Electrochimica Acta, 2000, 45 (15): 2483.