Please wait a minute...
 
2222材料工程  2019, Vol. 47 Issue (5): 145-152    DOI: 10.11868/j.issn.1001-4381.2016.001494
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
以预锂化多壁碳纳米管为负极的锂离子电容器性能
蔡满园, 孙晓刚(), 陈玮, 邱治文, 陈珑, 刘珍红, 聂艳艳
南昌大学 机电工程学院, 南昌 330031
Performance of lithium-ion capacitors using pre-lithiated multiwalled carbon nanotubes as negative electrode
Man-yuan CAI, Xiao-gang SUN(), Wei CHEN, Zhi-wen QIU, Long CHEN, Zhen-hong LIU, Yan-yan NIE
School of Mechatronics Engineering, Nanchang University, Nanchang 330031, China
全文: PDF(4416 KB)   HTML ( 12 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用内部短路方式对多壁碳纳米管负极进行不同程度的预嵌锂处理,预嵌锂时间为5,30,60min,以预嵌锂多壁碳纳米管极片作为负极,活性炭极片作为正极,组装成锂离子电容器。利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)对多壁碳纳米管及电极极片进行表征分析,采用恒流充放电(GCD)和交流阻抗谱(EIS)研究预嵌锂多壁碳纳米管负极和未预嵌锂处理多壁碳纳米管负极锂离子电容器的性能。电化学测试结果表明,多壁碳纳米管负极预嵌锂大幅提高了电容器充放电性能,对比未嵌锂多壁碳纳米管电容器,在相同的电流密度下(100mA/g),能量密度提高400%。预嵌锂60min,电流密度100mA/g时,其比容量达到57F/g。在电流密度为100~3200mA/g范围内,其最高能量密度与功率密度分别达到90Wh/kg,4130W/kg。1000次充放电循环后,容量保持率维持在85%以上,表现出良好的超级电容器性能。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蔡满园
孙晓刚
陈玮
邱治文
陈珑
刘珍红
聂艳艳
关键词 预嵌锂负极多壁碳纳米管活性炭锂离子电容器    
Abstract

Pre-lithiated multiwalled carbon nanotube anode was prepared by internal short approach(IS) for 5min, 30min and 60min. Lithium ion capacitors (LICs) were assembled using pre-lithiated multiwalled carbon nanotubes as cathode and activated carbon(AC) as anode. The structure characterization of multiwalled carbon nanotubes and electrodes were investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The electrochemical performance of pre-lithiated multiwalled carbon nanotube electrodes and pure multiwalled carbon nanotubes electrodes were tested by galvanostatic charge/discharge and electrochemical impedance spectrum. The electrochemical tests indicate that the charge-discharge performance of LIC is greatly improved by pre-lithiation of multiwalled carbon nanotubes. The energy density reaches about 4 times over conventional electric double-layer capacitors (EDLCs) at the current density of 100mA/g. The LICs achived a specific capacitance of 57F/g at the current density of 100mA/g with 60min pre-lithiatiation process. The maximum energy density and power density reach 90Wh/kg and 4130W/kg respectively in the current range of 100-3200mA/g. The capacity retention rate remains more than 85% after 1000 cycles. The LIC shows excellent supercapacitor performance.

Key wordspre-lithiatiation    anode    multiwalled carbon nanotubes(MWCNTs)    activated carbon(AC)    lithium-ion capacitor
收稿日期: 2016-12-12      出版日期: 2019-05-17
中图分类号:  O646  
基金资助:江西省科技厅科研项目(20142BBE50071);江西省教育厅(KJD13006)
通讯作者: 孙晓刚     E-mail: xiaogangsun@163.com
作者简介: 孙晓刚(1957-), 男, 博士, 教授, 研究方向为碳纳米管及锂离子电池, 联系地址:江西省南昌市红名滩新区学府大道999号南昌大学前湖校区机电工程学院(330031), E-mail:xiaogangsun@163.com
引用本文:   
蔡满园, 孙晓刚, 陈玮, 邱治文, 陈珑, 刘珍红, 聂艳艳. 以预锂化多壁碳纳米管为负极的锂离子电容器性能[J]. 材料工程, 2019, 47(5): 145-152.
Man-yuan CAI, Xiao-gang SUN, Wei CHEN, Zhi-wen QIU, Long CHEN, Zhen-hong LIU, Yan-yan NIE. Performance of lithium-ion capacitors using pre-lithiated multiwalled carbon nanotubes as negative electrode. Journal of Materials Engineering, 2019, 47(5): 145-152.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.001494      或      http://jme.biam.ac.cn/CN/Y2019/V47/I5/145
Fig.1  内部短路预嵌锂结构示意图
Fig.2  碳纳米管SEM(a)、TEM(b)图像,活性炭正极极片(c)和碳纳米管负极极片SEM图(d)
Fig.3  CNTs XRD(a)和拉曼图谱(b)
Fig.4  不同预理化碳纳米管负极颜色的变化图像
Fig.5  碳纳米管电极预嵌锂前首次充放电曲线图(a)和不同预嵌锂时间首次充电曲线图(b)
Fig.6  碳纳米管负极预嵌锂前后锂离子电容器在不同电流密度下的恒流充放电曲线
(a)未预锂化处理; (b)预锂化时间为5min; (c)预锂化时间为30min; (d)预锂化时间为60min;(e)不同电流密度比电容曲线;(f)功率密度-能量密度曲线
Current density/ (mA·g-1)LIC0 LIC5 LIC30 LIC60
Csp/ (F· g-1) Psp/ (W· kg-1) Esp/ (Wh· kg-1) Csp/ (F· g-1) Psp/ (W· kg-1) Esp/ (Wh· kg-1) Csp/ (F· g-1) Psp/ (W· kg-1) Esp/ (Wh· kg-1) Csp/ (F· g-1) Psp/ (W· kg-1) Esp/ (Wh· kg-1)
  100 14.64 148 29.3 33.42 153 53.85 42.45   148 67 57   148.6 90
  200 12.4 294 19.2 32.5 288 51.66 41.3   297 63 53.9   293.3 82.2
  300 10.2 436 14.9 27.6 483 43.57 40.43   434 60.8 51   436.4 76
  400   8.9 575 12.6 25.4 585 39.3 34.8   850 50.5 50   583 75
  800   7.1 1109 8.6 17.2 1170 26 29.3 1143 39.7 47.6 1145 65.5
1200 - - - 17.1 1731 25 26.6 1672 33.9 44.8 1684 56.6
2000 - - - - - - - - - 29.5 2720 29.5
3200 - - - - - - - - - 24.7 4130 22.1
Table 1  多壁碳纳米管负极锂离子电容器在不同电流密度下的比容量、功率密度、能量密度对比数据
Fig.7  LIC60循环前后交流阻抗(a)和等效电路模型和拟合曲线(b)
Sample RsSEI layer Charge transfer
R1 CPE1/F Rct CPEd1/F
Before cycling 3.405 10.33 0.2267 26.67 1.09×10-4
After cycling 4.292 14.46 0.0811 37.08 1.33×10-4
Table 2  LIC60锂离子电容器循环前后拟合参数
Fig.8  不同预嵌锂程度锂离子电容器的充放电循环性能
1 MILLER J R , SIMON P . Materials science.electrochemical capacitors for energy management[J]. Science, 2008, 321 (5889): 651- 652.
doi: 10.1126/science.1158736
2 KRAUSE A , KOSSYREV P , OLJACA M , et al. Electroch-emical double layer capacitor and lithium-ion capacitor based on carbon black[J]. Journal of Power Sources, 2011, 196 (20): 8836- 8842.
doi: 10.1016/j.jpowsour.2011.06.019
3 RAND D A J . A journey on the electrochemical road to sustainability[J]. Journal of Solid State Electrochemistry, 2011, 15 (7): 1579- 1622.
4 PASQUIER A D , PLITZ I , GURAL J , et al. Power-ion battery:bridging the gap between Li-ion and supercapacitor chemistries[J]. Journal of Power Sources, 2004, 136 (1): 160- 170.
doi: 10.1016/j.jpowsour.2004.05.023
5 AMATUCCI G G , BADWAY F , PASQUIER A D , et al. An asymmetric hybrid nonaqueous energy storage cell[J]. Journal of the Electrochemical Society, 2001, 148 (8): A930- A939.
doi: 10.1149/1.1383553
6 PASQUIER A D , PLITZ I , MENOCAL S , et al. A comparative study of Li-ion battery, supercapacitor and nonaqueous asymmetric hybrid devices for automotive applications[J]. Journal of Power Sources, 2003, 115 (1): 171- 178.
doi: 10.1016/S0378-7753(02)00718-8
7 DAHN J R , STEEL J A . Energy and capacity projections for practical dual-graphite cells[J]. Journal of the Electrochemical Society, 2000, 147 (3): 899- 901.
doi: 10.1149/1.1393289
8 YOSHINO A , TSUBATA T , SHIMOYAMADA M , et al. Dev-elopment of a lithium-type advanced energy storage device[J]. Journal of the Electrochemical Society, 2004, 151 (12): A2180- A2182.
doi: 10.1149/1.1813671
9 WOO S W , DOKKO K , NAKANO H , et al. Bimodal porous carbon as a negative electrode material for lithium-ion capacitors[J]. Electrochemistry, 2007, 75 (8): 635- 640.
doi: 10.5796/electrochemistry.75.635
10 LEE S W , YABUUCHI N , GALLANT B M , et al. High-pow-er lithium batteries from functionalized carbon-nanotube electrodes[J]. Nature Nanotechnology, 2010, 5 (7): 531- 537.
doi: 10.1038/nnano.2010.116
11 TROPY N L, CAO W, ZHENG J P. Comparison study of various anode materials for Li-ion capacitors[C]//The Electr-ochemical Society, 2014(2): 227.
12 ZHANG P, MA J, MANI S, et al. High performance anode material for lithium-ion battery: US7722991[P]. 2010.
13 BYEON A , GLUSHENKOV A M , ANASORI B , et al. Lit-hium-ion capacitors with 2D Nb2CTx, (MXene)-carbon nano-tube electrodes[J]. Journal of Power Sources, 2016, 326, 686- 694.
doi: 10.1016/j.jpowsour.2016.03.066
14 HSIEH C L , TSAI D S , CHIANG W W , et al. A composite electrode of tin dioxide and carbon nanotubes and its role as negative electrode in lithium ion hybrid capacitor[J]. Electr-ochimica Acta, 2016, 209, 332- 340.
doi: 10.1016/j.electacta.2016.05.090
15 KHOMENKO V , RAYMUNDO-PIÑERO E , BÉGUIN F . High-energy density graphite/AC capacitor in organic electrolyte[J]. Journal of Power Sources, 2008, 177 (2): 643- 651.
doi: 10.1016/j.jpowsour.2007.11.101
16 YANG J , ZHOU X Y , JIE L I , et al. Carbonaceous mesophase spherule/activated carbon composite as anode materials for super lithium ion capacitors[J]. Journal of Central South University of Technology, 2011, 18 (4): 972- 977.
doi: 10.1007/s11771-011-0789-0
17 REN J J , SU L W , QIN X , et al. Pre-lithiated graphene nanosheets as negative electrode materials for Li-ion capacitors with high power and energy density[J]. Journal of Power Sour-ces, 2014, 264 (264): 108- 113.
18 JIN Z , LIU X , JING W , et al. Different types of pre-lithiated hard carbon as negative electrode material for lithium-ion capac-itors[J]. Electrochimica Acta, 2016, 187, 134- 142.
doi: 10.1016/j.electacta.2015.11.055
19 SIVAKKUMAR S R , PANDOLFO A G . Evaluation of lithium-ion capacitors assembled with pre-lithiated graphite anode and activated carbon cathode[J]. Electrochimica Acta, 2012, 65, 280- 287.
doi: 10.1016/j.electacta.2012.01.076
20 KONNO H , KASASHIMA T , AZUMI K . Application of Si-C-O glass-like compounds as negative electrode materials for lithium hybrid capacitors[J]. Journal of Power Sources, 2009, 191 (2): 623- 627.
doi: 10.1016/j.jpowsour.2009.02.091
21 ZHANG S , LI C , ZHANG X , et al. High performance lithium-ion hybrid capacitors employing Fe3O4-graphene composite anode and activated carbon cathode[J]. ACS Appl Mater Inter-faces, 2017, 9 (20): 17136- 17144.
doi: 10.1021/acsami.7b03452
22 PARK M S , LIM Y G , KIM J H , et al. A novel lithium-doping approach for an advanced lithium ion capacitor[J]. Advanced Energy Materials, 2011, 1 (6): 1002- 1006.
doi: 10.1002/aenm.201100270
23 GOURDIN G , SMITH P H , JIANG T , et al. Lithiation of amorphous carbon negative electrode for Li ion capacitor[J]. Journal of Electroanalytical Chemistry, 2013, 688 (4): 103- 112.
24 WANG Y , LIU C , PAN R , et al. Modeling and state-of-charge prediction of lithium-ion battery and ultracapacitor hybrids with a co-estimator[J]. Energy, 2017, 121, 739- 750.
doi: 10.1016/j.energy.2017.01.044
25 CAI M , SUN X , CHEN W , et al. Performance of lithium-ion capacitors using pre-lithiated multiwalled carbon nanotubes/graphite composite as negative electrode[J]. Journal of Materials Science, 2018, 53 (1): 749- 758.
doi: 10.1007/s10853-017-1524-5
26 PARK H , KIM M , XU F , et al. In situ synchrotron wide-angle X-ray scattering study on rapid lithiation of graphite anode via direct contact method for Li-ion capacitors[J]. Journal of Power Sources, 2015, 283, 68- 73.
doi: 10.1016/j.jpowsour.2015.01.193
27 KIM M , XU F , LEE J , et al. A fast and efficient pre-doping approach to high energy density lithium-ion hybrid capacitors[J]. Journal of Materials Chemistry A, 2014, 2 (26): 10029- 10033.
doi: 10.1039/C4TA00678J
28 SUN X G , LIU Z H , LI N , et al. Carbon nanotube paper as anode for flexible lithium-ion battery[J]. Nano Brief Reports & Reviews, 2016, 11 (11): 1650120- 1.
29 AI G , WANG Z , ZHAO H , et al. Scalable process for application of stabilized lithium metal powder in Li-ion batteries[J]. Journal of Power Sources, 2016, 309, 33- 41.
doi: 10.1016/j.jpowsour.2016.01.061
30 ZHANG J , SHI Z , WANG J , et al. Composite of mesocarbon microbeads/hard carbon as anode material for lithium ion capa-citor with high electrochemical performance[J]. Journal of Electroanalytical Chemistry, 2015, 747, 20- 28.
doi: 10.1016/j.jelechem.2015.03.035
31 ZHANG J , SHI Z , WANG C . Effect of pre-lithiation degrees of mesocarbon microbeads anode on the electrochemical perfor-mance of lithium-ion capacitors[J]. Electrochimica Acta, 2014, 125 (12): 22- 28.
32 DOKKO K , FUJITA Y , MOHAMEDI M , et al. Electro-chemical impedance study of Li-ion insertion into mesocarbon microbead single particle electrode:Part Ⅱ[J]. Disordered carbon. Electrochimica acta, 2001, 47 (6): 933.
doi: 10.1016/S0013-4686(01)00809-X
33 KÖTZ R , CARLEN M . Principles and applications of electro-chemical capacitors[J]. Electrochimica Acta, 2000, 45 (15): 2483.
[1] 黄俊俏, 沈之川, 钟嘉炜, 谢文浩, 施志聪. 聚合物固态电解质-锂负极界面的研究进展[J]. 材料工程, 2022, 50(5): 62-77.
[2] 吴乾鑫, 刘磊, 孙晋蒙, 李一帆, 刘宇航, 杜洪方, 艾伟, 杜祝祝, 王科. 磺酸基修饰石墨烯复合材料的储钠性能研究[J]. 材料工程, 2022, 50(4): 36-43.
[3] 李茂辉, 杨智, 潘廷仙, 同鑫, 胡长刚, 田娟. 铁氮掺杂活性炭载体增强碳载铂基催化剂氧还原反应稳定性[J]. 材料工程, 2022, 50(4): 132-138.
[4] 杨珺, 林元华, 廖丽, 陈杨阳, 冯炫杰, 李佩, 纪洪江, 王明珊, 陈俊臣, 李星. 电解液化学保护锂金属电池负极的研究进展[J]. 材料工程, 2021, 49(7): 35-45.
[5] 张健华, 张伟, 余章龙, 史碧梦, 杨娟玉. 锂离子电池用三维网状水系黏结剂的研究进展[J]. 材料工程, 2021, 49(6): 44-54.
[6] 廉恬柔, 卢玉晓, 吴冰, 石光跃, 马蕾, 刘磊, 娄建忠. 纳米级Li4Ti5O12负极材料的制备及其输运特性[J]. 材料工程, 2021, 49(3): 59-66.
[7] 齐新, 王晨, 南文争, 洪起虎, 彭思侃, 燕绍九. 人造固态电解质界面在锂金属负极保护中的应用研究[J]. 材料工程, 2020, 48(6): 50-61.
[8] 李旭, 孙晓刚, 王杰, 陈玮, 黄雅盼, 梁国东, 魏成成, 胡浩. 无黏结剂柔性Si/CNT/纤维素复合阳极及其电化学性能[J]. 材料工程, 2020, 48(4): 139-144.
[9] 许剑轶, 张国芳, 胡峰, 王瑞芬, 寇勇, 张胤. La-Mg-Ni系A5B19超晶格负极材料相结构及电化学性能[J]. 材料工程, 2020, 48(2): 46-52.
[10] 陈玮, 孙晓刚, 胡浩, 王杰, 李旭, 梁国东, 黄雅盼, 魏成成. AC+Li(NiCoMn)O2/Li4Ti5O12+MWCNTs混合型电容器[J]. 材料工程, 2020, 48(1): 128-135.
[11] 李旭, 孙晓刚, 蔡满园, 王杰, 陈玮, 陈珑, 邱治文. 氟化多壁碳纳米管作正极对锂/氟电池性能的影响[J]. 材料工程, 2019, 47(8): 22-27.
[12] 常增花, 王建涛, 李文进, 武兆辉, 卢世刚. 锂离子电池硅基负极界面反应的研究进展[J]. 材料工程, 2019, 47(2): 11-25.
[13] 李诗杰, 韩奎华. 基于“蛋盒”结构海藻基超级活性炭的制备及电化学性能[J]. 材料工程, 2019, 47(10): 97-104.
[14] 云亮, 刘峥, 李海莹, 王浩, 钟寒阳. 原位合成壳聚糖复合炭材料及其在铅碳电池中的应用[J]. 材料工程, 2018, 46(8): 57-63.
[15] 李诗杰, 张继刚, 李金晓, 韩奎华, 韩旭东, 路春美. 超级电容器用马尾藻基超级活性炭的制备及其电化学性能[J]. 材料工程, 2018, 46(7): 157-164.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn