Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (6): 80-87    DOI: 10.11868/j.issn.1001-4381.2016.001499
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
镍基617合金动态再结晶微观组织演变与预测
朱怀沈, 聂义宏, 赵帅, 王宝忠
中国第一重型机械集团天津重型装备工程研究有限公司, 天津 300457
Microstructure Evolution and Prediction of Alloy 617 During Hot Deformation Based on Dynamic Recrystallization
ZHU Huai-shen, NIE Yi-hong, ZHAO Shuai, WANG Bao-zhong
Tianjin Heavy Industries Research and Development Co. Ltd., China First Heavy Industry Group, Tianjin 300457, China
全文: PDF(5275 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 通过Gleeble-3500热模拟试验机对镍基617合金进行等温压缩热变形实验,分析617合金在不同变形条件下各变形参数影响动态再结晶微观组织演变的规律。在对应力应变曲线及金相组织照片等实验数据计算分析的基础上,建立617合金动态再结晶模型,并将其导入有限元软件Deform-3D中,对617合金锻造工艺实验中晶粒组织演化进行数值模拟。结果表明:计算结果与实验结果相吻合,基本实现了变形过程微观组织的预测控制,验证了模型的准确性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱怀沈
聂义宏
赵帅
王宝忠
关键词 镍基617合金先进超超临界动态再结晶模型微观组织演变数值模拟    
Abstract:The hot compressive experiments of nickel-based alloy 617 were carried out at the different deformation conditions on a Gleeble-3500 thermal-simulator.The rule of the process parameters on the dynamic recrystallization microstructure evolution of alloy 617 under different deformation conditions were analyzed.Microstructure evolution models of dynamic recrystallization were constructed based on computational analyzed on the experiment data including strain-stress curves and metallographic photos.The models were implanted into finite element software Deform-3D in order to predict microstructure evolution during hot forging.The results show that the simulated results are in good agreement with the actual results, prediction control on the microstructure of alloy 617 during hot forging is achieved and the accuracy of models is verified.
Key wordsalloy 617    advanced ultra-supercritical    dynamic recrystallization model    microstructure evolution    numerical simulation
收稿日期: 2016-12-14      出版日期: 2018-06-14
中图分类号:  TG132.3  
通讯作者: 朱怀沈(1985-),男,工程师,硕士,研究方向:先进超超临界机组关键部件材料与制造工艺开发,联系地址:天津市天津经济技术开发区海星街20号重型装备国家工程中心(300457),E-mail:zhuhswh@163.com     E-mail: zhuhswh@163.com
引用本文:   
朱怀沈, 聂义宏, 赵帅, 王宝忠. 镍基617合金动态再结晶微观组织演变与预测[J]. 材料工程, 2018, 46(6): 80-87.
ZHU Huai-shen, NIE Yi-hong, ZHAO Shuai, WANG Bao-zhong. Microstructure Evolution and Prediction of Alloy 617 During Hot Deformation Based on Dynamic Recrystallization. Journal of Materials Engineering, 2018, 46(6): 80-87.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.001499      或      http://jme.biam.ac.cn/CN/Y2018/V46/I6/80
[1] SAUDERS J, MONTERIRO M, RIZZO F, et al. The oxidation behavior of metals and alloys at high temperatures in atmospheres containing water vapor:a review[J]. Progress in Materials Science, 2008, 53(5):775-837.
[2] AKBARI-GARAKANI M, MEHDIZADEH M. Effect of longterm service exposure on microstructure and mechanical properties of alloy 617[J]. Materials & Design, 2011, 32(5):2695-2700.
[3] BUGGE J, KJAER S, BLUM R. High-efficiency coal-fired power plants development and perspectives[J]. Energy, 2006, 31(10):1437-1445.
[4] KLÖWER J, HUSEMANN R U, BADER M, et al. Development of nickel alloys based on alloy 617 for components in 700℃ power plants[J]. Procedia Engineering, 2013, 55:226-231.
[5] GARIBOLDI E, CABIBBO M, SPIGARELLI S. Investigation on precipitation phenomena of Ni-22Cr-12Co-9Mo alloy aged and crept at high temperature[J]. International Journal of Pressure Vessels and Piping, 2008, 85(1/2):63-71.
[6] 郭岩, 周荣灿, 侯淑芳, 等. 617合金760℃时效组织结构及力学性能分析[J]. 中国电机工程学报, 2010, 30(26):86-89. GUO Y, ZHOU R C, HOU S F, et al. Analysis of microstructure and mechanical properties of alloy 617 aged at 760℃[J]. Proceedings of the CSEE, 2010, 30(26):86-89.
[7] GARIBOLDI E, CABIBBO M, SPIGARELLI S. Investigation on precipitation phenomena of Ni-22Cr-12Co-9Mo alloy aged and crept at high temperature[J]. International Journal of Pressure Vessels and Piping, 2008, 85(1/2):63-71.
[8] 叶建水, 董建新, 张麦仓, 等. 700℃超超临界电站锅炉用617B和740H管道氩弧焊接头微观组织特征[J]. 稀有金属材料与工程, 2015, 44(9):2189-2195. YE J S, DONG J X, ZHANG M C, et al. Microstructure characteristics of 617B tube and 740H pipe TIG welding joints for 700℃ ultra-supercritical power plant boilers[J]. Raremetal Materials and Engineering, 2015, 44(9):2189-2195.
[9] 罗子健, 杨旗, 姬婉华. 考虑变形热效应的本构关系建立方法[J]. 中国有色金属学报, 2000, 10(6):804-808. LUO Z J,YANG Q,JI W H.New method to establish constitutive relationship considering effect of deformation heating[J].The Chinese Journal of Nonferrous Metals, 2000, 10(6):804-808.
[10] 董建新. 镍基合金管材挤压及组织控制[M]. 北京:冶金工业出版社, 2014. DONG J X. Extrusion and microstructure control of nickel based alloy tubes[M]. Beijing:Metallurgical Industry Press, 2014.
[11] 杨晓雅, 何岸, 谢甘霖, 等. 核电用奥氏体不锈钢的动态再结晶行为[J]. 工程科学学报, 2015, 37(11):1447-1455. YANG X Y, HE A, XIE G L, et al. Dynamic recrystallization behavior of an austenitic stainless steel for nuclear power plants[J]. Chinese Journal of Engineering, 2015, 37(11):1447-1455.
[12] 黄顺喆, 厉勇, 王春旭, 等. SAE9310钢动态再结晶临界条件的研究[J]. 航空材料学报, 2014, 34(3):21-27. HUANG S Z, LI Y, WANG C X, et al. Dynamic recrystallization in SAE9310 steel[J]. Journal of Aeronautical Materials, 2014, 34(3):21-27.
[13] SAADATKIA S, MIRZADEH H, CABRERA J M. Hot deformation behavior, dynamic recrystallization, and physically-based constitutive modeling of plain carbon steels[J]. Materials Science and Engineering:A, 2015, 636:196-202.
[14] POLIAK E I, JOANS J J. A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization[J]. Acta Materia, 1996, 44(1):127-136.
[15] POLIAK E I, JONAS J J. Initiation of dynamic recrystallization in constant strain rate hot deformation[J]. ISIJ International, 2003, 43(5):684-691.
[16] 李冬勤, 徐磊, 黄兴民, 等. 7A04铝合金动态再结晶的临界应变研究[J]. 材料工程, 2013(4):23-27. LI D Q, XU L, HUANG X M, et al. Investigation on critical strain of dynamic recrystallization for 7A04 aluminum alloy[J]. Journal of Materials Engineering, 2013(4):23-27.
[17] QUAN G Z, SHI Y, WANG Y X, et al. Constitutive modeling for the dynamic recrystallization evolution of AZ80 magnesium alloy based on stress-strain data[J]. Materials Science and Engineering:A, 2011, 528:8051-8059.
[1] 赵魏, 王雅娜, 王翔. 分层界面角度对CFRP层板Ⅱ型分层的影响[J]. 材料工程, 2019, 47(9): 152-159.
[2] 郜庆伟, 赵健, 舒凤远, 吕成成, 齐宝亮, 于治水. 铝合金增材制造技术研究进展[J]. 材料工程, 2019, 47(11): 32-42.
[3] 王岩, 徐芳泓, 曾莉, 方旭东, 李阳, 李建民. 700℃(A-USC)锅炉材料617B镍基高温合金热变形及持久行为[J]. 材料工程, 2018, 46(7): 100-105.
[4] 刘多, 刘景和, 周英豪, 宋晓国, 牛红伟, 冯吉才. 紫铜/Al2O3陶瓷/不锈钢复合结构钎焊接头残余应力研究[J]. 材料工程, 2018, 46(3): 61-66.
[5] 尹建成, 杨环, 刘英莉, 陈业高, 张八淇, 钟毅. 约束喷射沉积过程中雾化气流场的模拟研究[J]. 材料工程, 2018, 46(11): 102-109.
[6] 梁贤烨, 弭光宝, 李培杰, 曹京霞, 黄旭. 钛合金叶片燃烧后冷却过程的三维热流耦合数值模拟[J]. 材料工程, 2018, 46(10): 37-46.
[7] 卢玉章, 熊英, 彭建强, 申健, 郑伟, 张功, 谢光. 重型燃机定向结晶空心叶片凝固过程的实验与模拟[J]. 材料工程, 2018, 46(1): 8-15.
[8] 杨珍, 鲁金涛, 张夏妮, 赵新宝, 袁勇, 党莹樱, 尹宏飞, 谷月峰. 水蒸气温度对700℃先进超超临界锅炉候选合金GH2984氧化行为的影响[J]. 材料工程, 2018, 46(1): 74-82.
[9] 孙颖迪, 陈秋荣. AZ31镁合金管材挤压成型数值模拟与实验研究[J]. 材料工程, 2017, 45(6): 1-7.
[10] 朱庆丰, 张扬, 朱成, 班春燕, 崔建忠. 高纯铝多向锻造大塑性变形过程的数值模拟及实验研究[J]. 材料工程, 2017, 45(4): 15-20.
[11] 赵福泽, 朱绍珍, 冯小辉, 杨院生. 高能超声分散纳米晶须的数值和物理模拟[J]. 材料工程, 2016, 44(7): 13-18.
[12] 张敏, 徐蔼彦, 汪强, 李露露. Al-4%Cu凝固过程枝晶生长的数值模拟[J]. 材料工程, 2016, 44(6): 9-16.
[13] 陈平, 项欣, 李俊玲, 邵天敏, 刘光磊. 沟槽型织构摩擦学性能的数值模拟与实验研究[J]. 材料工程, 2016, 44(6): 31-37.
[14] 卢玉章, 申健, 郑伟, 徐正国, 张功, 谢光. 单晶铸件凝固过程工艺优化的数值模拟[J]. 材料工程, 2016, 44(11): 1-8.
[15] 王宁, 李健, 关志军, 谭凯. 工艺参数对钼粉烧结体近等温包套锻造成形过程中应变的影响[J]. 材料工程, 2015, 43(6): 46-51.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn