Please wait a minute...
 
2222材料工程  2018, Vol. 46 Issue (9): 88-94    DOI: 10.11868/j.issn.1001-4381.2016.001507
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
超微坡缕石/Cu复合粉体作为润滑油添加剂的摩擦学性能
吴雪梅(), 杨绿, 周元康, 曹阳
贵州大学 机械工程学院, 贵阳 550025
Tribological Properties of Ultrafine-palygorskite/Copper Composite Powder as Lubricant Additive
Xue-mei WU(), Lu YANG, Yuan-kang ZHOU, Yang CAO
School of Mechanical Engineering, Guizhou University, Guiyang 550025, China
全文: PDF(4680 KB)   HTML ( 9 )  
输出: BibTeX | EndNote (RIS)      
摘要 

将球磨改性的超微坡缕石/Cu复合粉体(超微P/Cu)作为添加剂加入150N基础油中,利用四球摩擦磨损试验机考察润滑油极压性能、载荷和速度对其减摩抗磨性能的影响。采用扫描电子显微镜、X射线能谱分析仪、X射线光电子能谱仪对钢球磨斑表面形貌和化学元素进行分析。结果表明:超微P/Cu能够提高基础油的摩擦学性能,其最大无卡咬合负荷PB值比基础油提高了26.3%,比超微粉体P和Cu单独作用提高了9.1%;载荷和转速影响超微P/Cu的减摩抗磨性能,当载荷为245N、转速为1200r/min时,超微P/Cu具有良好的减摩抗磨性能。超微P/Cu较佳的减摩抗磨机制,归因于复合超微粒子在摩擦表面生成了孔状结构的坡缕石自修复膜和铜的延展膜。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴雪梅
杨绿
周元康
曹阳
关键词 超微坡缕石/铜添加剂复合材料摩擦学性能    
Abstract

The ultrafine-palygorskite/copper composites(ultrafine-P/Cu) were prepared by mechanical ball milling. The extreme pressure properties and the effect of load and speed on tribological properties of ultrafine-P/Cu powders, as 150N base oil additive, were evaluated on a four ball friction wear tester. The morphologies, element distributions and micromechanical properties of the worn surface were investigated by means of scanning electron microscopy, energy dispersive spectrometry and X-ray photoelectron spectroscopy. The results indicate that ultrafine-P/Cu used as a lubricant additive can effectively improve the tribological properties of base oil. The non-seizure value PB of ultrafine-P/Cu lubricant is increased by 31.6% than the base oil and by 9.1% than the single particles. Load and speed can affect the tribological properties of ultrafine-P/Cu. Ultrafine-P/Cu exhibits the optimum friction-reducing property and anti-wear property at the load of 245N and speed of 1200r/min, respectively. The excellent tribological properties of ultrafine-P/Cu can be attributed to the porous auto-restoration film of palygorskite and extended film of Cu formed on the worn surface to compensate wear and repair friction.

Key wordsultrafine-palygorskite/Cu    additive    composite    tribological property
收稿日期: 2016-12-14      出版日期: 2018-09-19
中图分类号:  TG117.3  
基金资助:贵州省科学技术基金资助项目(黔科合J字[2011]2011号)
通讯作者: 吴雪梅     E-mail: xm_wu@163.com
作者简介: 吴雪梅(1975-), 女, 副教授, 博士, 主要研究方向为表面处理技术, 联系地址:贵州省贵阳市花溪区贵州大学机械工程学院(550025), E-mail: xm_wu@163.com
引用本文:   
吴雪梅, 杨绿, 周元康, 曹阳. 超微坡缕石/Cu复合粉体作为润滑油添加剂的摩擦学性能[J]. 材料工程, 2018, 46(9): 88-94.
Xue-mei WU, Lu YANG, Yuan-kang ZHOU, Yang CAO. Tribological Properties of Ultrafine-palygorskite/Copper Composite Powder as Lubricant Additive. Journal of Materials Engineering, 2018, 46(9): 88-94.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.001507      或      http://jme.biam.ac.cn/CN/Y2018/V46/I9/88
Sample PB/N D/mm
Base oil 372 0.332
B+P 431 0.337
B+Cu 431 0.334
B+P/Cu 470 0.353
Table 1  不同添加剂润滑油的PB值和磨斑直径D(1%,P: Cu=3: 1)
Mass fraction/% PB/N D/mm
0 372 0.330
1 470 0.353
2 470 0.357
3 470 0.358
Table 2  不同质量分数超微P/Cu的PB值和磨斑直径D(P: Cu=3: 1)
Fig.1  不同载荷作用下超微P/Cu的平均摩擦因数(a)和磨斑直径(b)
Fig.2  不同载荷下钢球磨斑的SEM图(1)和EDS能谱图(2)
(a)147N(无添加);(b)147N(添加1%P/Cu);(c)245N(添加1%P/Cu)
Fig.3  不同转速下超微P/Cu的平均摩擦因数(a)和磨斑直径(b)
Fig.4  不同转速下钢球磨斑的SEM图(1)和EDS能谱图(2)
(a)800r/min;(b)1200r/min
Fig.5  添加超微P/Cu的试样磨损表面XPS谱图
(a)C1s;(b)O1s;(c)Al2p;(d)Si2p;(e)Cu2p;(f)Fe2p;(g)Mg2p
1 YU H L , XU Y , SHI P J , et al. Tribological behaviors of surface-coated serpentine ultrafine powders as lubricant additive[J]. Tribology Int, 2010, 43 (3): 667- 675.
doi: 10.1016/j.triboint.2009.10.006
2 南峰, 许一, 高飞, 等. 凹凸棒石粉体作为润滑油添加剂的摩擦学性能[J]. 硅酸盐学报, 2013, 41 (6): 836- 841.
2 NAN F , XU Y , GAO F , et al. Tribological property of attapulgite powder as lubricant additive[J]. J Chin Ceram Soc, 2013, 41 (6): 836- 841.
3 许一, 南峰, 徐滨士. 凹凸棒石/油溶性纳米铜复合润滑添加剂的摩擦学性能[J]. 材料工程, 2016, 44 (10): 41- 46.
doi: 10.11868/j.issn.1001-4381.2016.10.006
3 XU Y , NAN F , XU B S . Tribological properties of attapulgite/oil-soluble nano-Cu composite lubricating additive[J]. Journal of Materials Engineering, 2016, 44 (10): 41- 46.
doi: 10.11868/j.issn.1001-4381.2016.10.006
4 杜鹏飞, 陈国需, 宋世远, 等. 白云母微粉作为润滑脂添加剂的摩擦学性能[J]. 硅酸盐学报, 2016, 44 (5): 748- 753.
4 DU P F , CHEN G X , SONG S Y , et al. Tirbological properties of muscovite micro-particle as lubricant additives in lithium grease[J]. Journal of the Chinese Ceramic Society, 2016, 44 (5): 748- 753.
5 乔玉林, 徐滨士. 纳米微粒的润滑和自修复技术[M]. 北京: 国防工业出版社, 2005: 10- 70.
5 QIAO Y L , XU B S . Lubrication and self-repairing technology of nanoparticles[M]. Beijing: National Defense Industry Press, 2005: 10- 70.
6 吴雪梅, 周元康, 杨绿, 等. 纳米坡缕石润滑油添加剂对45#钢摩擦副的抗磨及自修复性能[J]. 材料工程, 2012, (4): 82- 87.
doi: 10.3969/j.issn.1001-4381.2012.04.017
6 WU X M , ZHOU Y K , YANG L , et al. Effect of nano-palygorskite additive in base oil on anti-wear and self-repairing properties of 45 steel tribo-pair[J]. Journal of Materials Engineering, 2012, (4): 82- 87.
doi: 10.3969/j.issn.1001-4381.2012.04.017
7 于鹤龙, 许一, 史佩京, 等. 纳米铜颗粒的摩擦学性能研究及其减摩润滑机理探讨[J]. 材料工程, 2007, (10): 35- 48.
doi: 10.3969/j.issn.1001-4381.2007.10.009
7 YU H L , XU Y , SHI P J , et al. Tribological properties and mechanism of Cu nanoparticles[J]. Journal of Materials Engineering, 2007, (10): 35- 48.
doi: 10.3969/j.issn.1001-4381.2007.10.009
8 王晓丽, 徐滨士, 许一, 等. 高速高温下发动机纳米铜润滑材料的摩擦学行为[J]. 粉末冶金材料科学与工程, 2009, 14 (6): 407- 411.
doi: 10.3969/j.issn.1673-0224.2009.06.010
8 WANG X L , XU B S , XU Y , et al. Tribology behavior of engine nano-Cu lubricating material at a condition of high speed and temperature[J]. Mater Sci Eng Powder Metall, 2009, 14 (6): 407- 411.
doi: 10.3969/j.issn.1673-0224.2009.06.010
9 杨绿, 周元康, 李屹, 等. 坡缕石/Ag复合纳米材料添加剂的自修复性能研究[J]. 材料工程, 2012, (3): 12- 16, 21.
doi: 10.3969/j.issn.1001-4381.2012.03.003
9 YANG L , ZHOU Y K , LI Y , et al. Investigation on auto-restoration performance of palygorskite/Ag composite nanomaterial additive[J]. Journal of Materials Engineering, 2012, (3): 12- 16, 21.
doi: 10.3969/j.issn.1001-4381.2012.03.003
10 吴雪梅, 周元康, 杨绿, 等. 纳米坡缕石/铜复合材料对钢球摩擦副的摩擦学性能[J]. 复合材料学报, 2014, 31 (2): 441- 447.
10 WU X M , ZHOU Y K , YANG L , et al. Tribological properties of nano-palygorskite/copper composites as lubricant additive to steel ball tripair[J]. Acta Materiae Compositae Sinica, 2014, 31 (2): 441- 447.
11 王利民, 许一, 高飞, 等. 凹凸棒石纳米纤维用作润滑油添加剂的摩擦学性能[J]. 粉末冶金材料科学与工程, 2012, 17 (5): 657- 663.
doi: 10.3969/j.issn.1673-0224.2012.05.019
11 WANG L M , XU Y , GAO F , et al. Tribological properties of attapulgite clay as lubricant additive for steel-steel contacts[J]. Materials Science and Engineering of Powder Metallurgy, 2012, 17 (5): 657- 663.
doi: 10.3969/j.issn.1673-0224.2012.05.019
12 陈文刚, 高玉周, 张会臣. 蛇纹石粉体作为自修复添加剂的抗磨损机理[J]. 摩擦学学报, 2008, 28 (5): 463- 468.
doi: 10.3321/j.issn:1004-0595.2008.05.015
12 CHEN W G , GAO Y Z , ZHANG H C . Anti-wear mechanism of the serpentine powder as self-repairing additive[J]. Tribology, 2008, 28 (5): 463- 468.
doi: 10.3321/j.issn:1004-0595.2008.05.015
13 GONZALEZELIPE A R , ESPINOS J P , MUNUERA G , et al. Bonding-state characterization of constituent elements in phyllosillicate minerals by XPS and NMR[J]. Journal of Physical Chemistry, 1988, 92 (12): 3471- 3476.
doi: 10.1021/j100323a031
14 MONCOFFRE N , HOLLINGER G , JAFFREZIC H , et al. Temperature influence during nitrogen implantation into steel[J]. Nuclear Instruments and Methods in Physics Research B:Beam Interactions with Materials and Atoms, 1985, (7/8): 177- 183.
15 BRAND J V D , SNIJDERS P C , SLOOF W G , et al. Acid-base characterization of aluminum oxide surfaces with XPS[J]. J Phys Chem B, 2004, 108 (19): 6017- 6024.
doi: 10.1021/jp037877f
16 SHERWOOD P M A . Introduction to studies of aluminum and its compounds by XPS[J]. Surface Science Spectra, 1998, 5 (1): 1- 3.
doi: 10.1116/1.1247880
17 ILKUR T , SEFIK S , MIGUEL A , et al. XPS characterization of Au(core)/SiO2 (shell) nanoparticles[J]. The Journal of Physical Chemistry B Letters, 2005, 109 (16): 7597- 7600.
doi: 10.1021/jp050767j
18 FREEMAN T L , EVANS S D , ULMAN A . XPS studies of self-assembled multilayer films[J]. Langmuir, 1995, (11): 4411- 4417.
19 TAN B J , KLABUNDE K J , SHERWOOD P M A , et al. X-ray photoelectron spectroscopy studies of solvated metal atom dispersed catalysts. monometallic iron and bimetallic iron-cobalt particles on alumina[J]. Chemistry of Materials, 2002, 2 (2): 186- 191.
20 BECCARIA A M , POGGI G , CASTELLO G . Influence of passive film composition and sea water pressure on resistance to localised corrosion of some stainless steels in sea water[J]. British Corrosion Journal, 1995, 30 (4): 283- 287.
doi: 10.1179/bcj.1995.30.4.283
[1] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[2] 孔国强, 安振河, 魏化震, 李莹, 邵蒙, 于秋兵, 纪校君, 李居影, 王康. 碳纤维丝束结构对碳纤维/酚醛复合材料烧蚀性能的影响[J]. 材料工程, 2022, 50(9): 113-119.
[3] 米玉洁, 宋明明, 张存瑞, 张贵恩, 王月祥, 常志敏. 羰基铁室温硫化硅橡胶复合材料的吸波性能[J]. 材料工程, 2022, 50(9): 120-126.
[4] 邢宇, 张代军, 王成博, 倪洪江, 李军, 陈祥宝. PEEK复合材料用碳纤维上浆剂研究进展[J]. 材料工程, 2022, 50(8): 70-81.
[5] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[6] 倪洪江, 邢宇, 戴霄翔, 李军, 张代军, 陈祥宝. 航空发动机用聚酰亚胺树脂基复合材料固化工艺及热稳定性能[J]. 材料工程, 2022, 50(7): 102-109.
[7] 吕双祺, 黄佳, 孙燕涛, 付尧明, 杨晓光, 石多奇. 莫来石纤维增强SiO2气凝胶复合材料压缩回弹性能实验与建模研究[J]. 材料工程, 2022, 50(7): 119-127.
[8] 杨智勇, 臧家俊, 方丹琳, 李翔, 李志强, 李卫京. 城轨列车制动盘SiCp/A356复合材料热疲劳裂纹扩展机理[J]. 材料工程, 2022, 50(7): 165-175.
[9] 彭斌意, 刘洋, 郑晓董, 李治国, 李国平, 胡建波, 王永刚. 激光选区熔化颗粒增强钛基复合材料的抗压性能[J]. 材料工程, 2022, 50(6): 36-48.
[10] 李军, 刘燕峰, 倪洪江, 张代军, 陈祥宝. 航空发动机用树脂基复合材料应用进展与发展趋势[J]. 材料工程, 2022, 50(6): 49-60.
[11] 刘庆帅, 刘秀波, 刘一帆, 张林, 孟元, 刘怀菲. 陶瓷基高温自润滑复合涂层的制备及摩擦学性能研究进展[J]. 材料工程, 2022, 50(6): 61-74.
[12] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[13] 于永涛, 刘元军. 原位聚合法制备铁氧体/聚苯胺吸波复合材料的研究进展[J]. 材料工程, 2022, 50(5): 90-99.
[14] 程子敬, 王凯峰, 张连洪. 基于微观尺度X射线断层扫描技术的短切碳纤维SMC复合材料失效分析[J]. 材料工程, 2022, 50(5): 130-138.
[15] 杜宗波, 时双强, 陈宇滨, 褚海荣, 杨程. 介电型石墨烯吸波复合材料研究进展[J]. 材料工程, 2022, 50(4): 74-84.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn