Please wait a minute...
 
材料工程  2016, Vol. 44 Issue (1): 1-10    DOI: 10.11868/j.issn.1001-4381.2016.01.001
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
Ti-V-Cr系阻燃钛合金的非等温氧化行为及阻燃性能预测
弭光宝, 曹春晓, 黄旭, 曹京霞, 王宝, 隋楠
北京航空材料研究院先进钛合金航空科技重点实验室, 北京 100095
Non-isothermal Oxidation Characteristic and Fireproof Property Prediction of Ti-V-Cr Type Fireproof Titanium Alloy
MI Guang-bao, CAO Chun-xiao, HUANG Xu, CAO Jing-xia, WANG Bao, SUI Nan
Aviation Key Laboratory of Science and Technology on Advanced Titanium Alloys, Beijing Institute of Aeronautical Materials, Beijing 100095, China
全文: PDF(7389 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用TGA/DSC实验方法,结合XRD,SEM和EDS分析,系统研究Ti-V,Ti-V-Cr合金的非等温氧化行为及氧化产物的微观结构,并探讨V和Cr元素对Ti-V-Cr阻燃钛合金抗非等温氧化性的影响机制。结果表明:从室温至1723K温度区间内,随着V元素含量的增加,Ti-V合金的抗非等温氧化性显著降低,氧化膜厚度从168μm增加至370μm,Ti-35V合金氧化膜厚度约为Ti-25V的1.45倍;Ti-V-Cr合金的抗非等温氧化性逐渐提高且差异较小,氧化膜厚度从110μm减小至85μm,Ti-35V-15Cr合金的氧化膜厚度比Ti-25V-15Cr降低约15.5%。Ti-V-Cr阻燃钛合金的抗非等温氧化性显著高于Ti-V合金,主要因为非等温氧化过程形成的液态相V2O5极大地释放了氧化膜的内应力,提高了氧化膜与合金基体的结合性,并与Cr2O3,TiO2共同阻止了O向合金基体的大量扩散。非等温氧化增重曲线及氧化膜厚度作为特征参数定量描述了Ti-V-Cr阻燃钛合金的抗非等温氧化性,与摩擦着火实验结果相一致,从而预测了合金的阻燃性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
弭光宝
曹春晓
黄旭
曹京霞
王宝
隋楠
关键词 阻燃钛合金非等温氧化热重分析阻燃性能钛火    
Abstract:The non-isothermal oxidation characteristic and the microstructure of the oxidation products were systematically studied by TGA/DSC test methods associated with XRD,SEM and EDS analysis methods. Further, the influence mechanism of vanadium and chromium elements on the non-isothermal oxidation resistance of Ti-V-Cr type fireproof titanium alloys was discussed. The results show that, from room temperature to 1723K, the non-isothermal oxidation resistance obviously decreases with increasing of vanadium content. Simultaneously, the oxidation film thickness increases from 168μm to 370μm, and the oxidation film thickness of Ti-35V alloys is about 1.45 times that of Ti-25V alloys; whereas the non-isothermal oxidation resistance of Ti-V-Cr type fireproof titanium alloys gradually increases with increasing of vanadium content and the differences among these alloys are quite small. The oxidation film thickness changes from 110μm to 85μm, and the thickness of Ti-35V-15Cr decreases about 15.5% than that of Ti-25V-15Cr alloy. The non-isothermal oxidation resistance of Ti-V-Cr alloys is much higher than that of Ti-V alloys, and the main reasons are that the liquid V2O5 formed during non-isothermal oxidation greatly releases the inner stress of oxidation film, which improves the combination ability between oxidation film and alloy matrix and also prevent together with Cr2O3 and TiO2 the massive diffusion of oxygen to the alloy matrix. The non-isothermal oxidation resistance characteristic of Ti-V-Cr fireproof titanium alloys is described quantitatively by non-isothermal oxide mass gain curve and oxidation film thickness, which are consistent with the results of friction ignition test. Therefore, the fireproof property of titanium alloy can be predicted.
Key wordsfireproof titanium alloy    non-isothermal oxidation    thermogravimetric analysis    fireproof property    titanium fire
收稿日期: 2015-11-12      出版日期: 2016-01-20
中图分类号:  TG146.2+3  
通讯作者: 弭光宝(1981-),男,博士,高级工程师,主要从事高温钛合金及阻燃性能评价等方面研究,联系地址:北京市81信箱15分箱(100095)     E-mail: miguangbao@163.com
引用本文:   
弭光宝, 曹春晓, 黄旭, 曹京霞, 王宝, 隋楠. Ti-V-Cr系阻燃钛合金的非等温氧化行为及阻燃性能预测[J]. 材料工程, 2016, 44(1): 1-10.
MI Guang-bao, CAO Chun-xiao, HUANG Xu, CAO Jing-xia, WANG Bao, SUI Nan. Non-isothermal Oxidation Characteristic and Fireproof Property Prediction of Ti-V-Cr Type Fireproof Titanium Alloy. Journal of Materials Engineering, 2016, 44(1): 1-10.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.01.001      或      http://jme.biam.ac.cn/CN/Y2016/V44/I1/1
[1] НОЧОВНАЯ Н А, АЛЕКСЕЕВ Е Б, ИЗОТОВА А Ю, др. Пожаробезопасные титановые сплавы и особенности их применения[J]. Титан, 2012, (4):42-46.
[2] STROBRIDGE T R, MOULDER J C, CLARK A F. Titanium combustion in turbine engines[R]. FAA-RD-79-51/NBSIR-79-1616. Springfield:National Technical Information Service, 1979.15-32.
[3] 黄旭,曹春晓,马济民,等.航空发动机钛燃烧及阻燃钛合金[J].材料工程, 1997,(8):11-15. HUANG Xu,CAO Chun-xiao,MA Ji-min,et al. Titanium combustion in aero-engines and fire-resistant titanium alloys[J]. Journal of Materials Engineering, 1997,(8):11-15.
[4] BERCZIK D M. Age hardenble beta titanium alloy[P]. United States Patent:5176762, 1993-01-05.
[5] STEVE T, CRAIG W. Light weight, high strength, and corrosion resistance are required of titanium and niobium alloys for aerospace application[J]. Advanced Materials and Processes, 1995,(4):23-26.
[6] 弭光宝,黄旭,曹京霞,等. Ti-V-Cr系阻燃钛合金抗点燃性能及其理论分析[J].金属学报, 2014, 50(5):575-586. MI Guang-bao, HUANG Xu, CAO Jing-xia, et al. Ignition resistance performance and its theoretical analysis of Ti-V-Cr type fireproof titanium alloy[J]. Acta Metallurgica Sinica, 2014, 50(5):575-586.
[7] 曹京霞,黄旭,弭光宝,等. Ti-V-Cr系阻燃钛合金应用研究进展[J].航空材料学报, 2014, 34(4):92-97. CAO Jing-xia,HUANG Xu,MI Guang-bao,et al. Research progress on application technique of Ti-V-Cr fireproof titanium alloys[J]. Journal of Aeronautical Materials, 2014, 34(4):92-97.
[8] 赖运金,张平祥,辛社伟,等.国内阻燃钛合金工程化技术研究进展[J].稀有金属材料与工程, 2015, 44(8):2067-2073. LAI Yun-jin, ZHANG Ping-xiang, XIN She-wei, et al. Research progress on engineered technology of fireproof titanium alloy in China[J]. Rare Metal Materials and Engineering, 2015, 44(8):2067-2073.
[9] ANDERSON V, MANTY B. Titanium alloy ignition and combustion[R]. Florida:Pratt & Whitney Aircraft Group, Report No. 76083-30(Naval Air Development Center), 1978.10-32.
[10] LVTJERING G, WILLIAMS J C. Titanium[M]. 2nd ed. New York:Springer Berlin Heidelberg, 2007.51-53.
[11] БОРИСОВА Е А,СКЛЯРОВ Н М. Горение и Пожаробе-зопасность Титановых Сплавов[M]. Москва:ВИАМ, 2007. 8-25.
[12] LEYENS C, PETERS M. Titanium and Titanium Alloys:Fundamentals and Applications[M]. Weinheim:WILEY-VCH, 2003.342-345.
[13] 弭光宝,黄旭,曹京霞,等.一种表征航空发动机钛合金抗点燃性能的测试方法[P].中国专利:ZL201218003649.0, 2012-09-04.
[14] 弭光宝,黄旭,曹京霞,等.一种航空发动机用钛的阻燃性能测试方法与装置[P].中国专利:ZL201218001209.1, 2012-05-17.
[15] 弭光宝,曹春晓,黄旭,等.航空发动机用TC11钛合金抗点燃性能及机理研究[J].航空材料学报, 2014, 34(4):83-91. MI Guang-bao,CAO Chun-xiao,HUANG Xu, et al. Ignition resistance performance and its mechanism of TC11 titanium alloy for aero-engine[J]. Journal of Aeronautical Materials, 2014, 34(4):83-91.
[16] MI G B, HUANG X, CAI J X, et al. Fireproof property and its mechanism of a new high temperature titanium alloy[A]. The 13th World Conference on Titanium[C]. San Diego, USA:TMS, 2015.16-20.
[17] MI G B, HUANG X, CAO J X, et al. Frictional ignition of Ti40 fireproof titanium alloys for aero-engine in oxygen-containing media[J]. Trans Nonferrous Met Soc China, 2013, 23(8):2270-2275.
[18] TRUNOV M A, SCHOENITZ M, ZHU X Y, et al. Effect of polymorphic phase transformations in Al2O3 film on oxidation kinetics of aluminum powders[J]. Combustion and Flame, 2005, 140(4):310-318.
[19] TRUNOV M A, SCHOENITZ M, DREIZIN E L. Effect of polymorphic phase transformations in alumina layer on ignition of aluminum particles[J]. Combustion Theory and Modelling, 2006, 10(4):603-623.
[20] 弭光宝,黄旭,曹京霞,等.钛颗粒着火过程氧化膜破裂行为的理论研究[J].航空材料学报, 2012, 32(6):25-31. MI Guang-bao,HUANG Xu,CAO Jing-xia,et al. Theoretical research on oxide film fracture behavior during titanium particle ignition[J]. Journal of Aeronautical Materials, 2012, 32(6):25-31.
[21] MI G B, HUANG X S, LI P J, et al. Non-isothermal oxidation and ignition prediction of titanium-chromium alloys[J]. Trans Nonferrous Met Soc China, 2012, 22(10):2409-2415.
[22] ЛЯКИШЕВ. Диаграммы Состояния Двойных Металлических Систем[M]. Москва:Машиностроение, 2000.397-398.
[23] GOMES J E L, HUNTZ A M. Comparison of the kinetics and morphologic properties of titanium, Ti-1.5Ni and Ti-2.5Cu during oxidation in pure oxygen between 600 and 820℃[J]. Oxidation of Metals, 1980, 14(6):471-498.
[24] SCHULZ O, EISENREICH N, KELZENBERG S, et al. Non-isothermal and isothermal kinetics of high temperature oxidation of micrometer-sized titanium particles in air[J]. Thermochimica Acta, 2011, 517(1-2):98-104.
[25] HAGEL W C. Anion diffusion in alpha-Cr2O3[J]. Journal of the American Ceramic Society, 1965, 48(2):70-75.
[26] 徐凌,唐超群,戴磊,等. N掺杂锐钛矿TiO2电子结构的第一性原理研究[J].物理学报, 2007, 56(2):1048-1053. XU Ling,TANG Chao-qun,DAI Lei,et al. First-principles study of the electronic structure of N doping anatase TiO2[J]. Acta Phys Sin, 2007, 56(2):1048-1053.
[27] 彭丽萍,夏正才,尹建武.金红石相和锐钛矿相TiO2本征缺陷的第一性原理计算[J].物理学报, 2012, 61(3):037103. PENG Li-ping,XIA Zheng-cai,YIN Jian-wu. First-principles calculation of rutile and anatase TiO2 intrinsic defect[J]. Acta Phys Sin, 2012, 61(3):037103.
[28] HURLEN T. On the defect structure of rutile[J]. Acta Chemica Scandinavica, 1959, 13(2):365-376.
[29] KOFSTAD P,HAUFFE K,KJOLLESDAL H. Investigation on the oxidation mechanism of titanium[J]. Acta Chemica Scandinavica, 1958, 12(2):239-266.
[30] STRINGER J. The oxidation of titanium in oxygen at high temperatures[J]. Acta Metallurgica, 1960, 8(11):758-766.
[31] UNNAM J, CLARK R K. Oxidation of commercial purity titanium[J]. Oxidation of Metals, 1986, 26(3-4):231-252.
[32] ROSA C J. Oxygen diffusion in alpha and beta titanium in temperature range of 932℃ to 1142℃[J]. Metallurgical Transactions, 1970, 1(9):2517-2522.
[33] WALLWORK G R, JENKINS A E. Oxidation of titanium, zirconium, and hafnium[J]. Journal of the Electrochemical Society, 1959, 106(1):10-14.
[34] GERRITSEN H J, LEWIS H R. Paramagnetic resonance of V4+ in TiO2[J]. Phys Rev, 1960, 119(3):1010-1012.
[35] LARS S, ANDERSSON T. ESCA investigation of V2O5+TiO2 catalysts for the vapour phase oxidation of alkylpyridines[J]. J Chem Soc Faraday Trans, 1979, 75:1356-1370.
[36] 杨贞妮,刘强,朱忠其,等.钒掺杂TiO2粉体的制备及性能[J].粉末冶金材料科学与工程, 2009, 14(1):63-66. YANG Zhen-ni, LIU Qiang, ZHU Zhong-qi, et al. Preparation and properties of V-doped TiO2 powders[J]. Materials Science and Engineering of Powder Metallurgy, 2009, 14(1):63-66.
[37] 徐凌,唐超群,黄宗斌. V掺杂锐钛矿相TiO2的光吸收特性[J].物理化学学报, 2010, 26(5):1401-1407. XU Ling, TANG Chao-qun, HUANG Zong-bin. Light absorption properties of V-doped anatase TiO2[J]. Acta Phys Chim Sin, 2010, 26(5):1401-1407.
[38] 陈俊,严非男,梁丽萍,等. Cr掺杂锐钛矿相TiO2光学性质的第一性原理研究[J].人工晶体学报, 2011, 40(3):758-762. CHEN Jun,YAN Fei-nan,LIANG Li-ping,et al. First-principles study on the optical properties of Cr-doped anatase TiO2[J]. Journal of Synthetic Crystals, 2011, 40(3):758-762.
[39] SOMIYA S, HIRANO S, KAMIYA S. Phase relations of the Cr2O3-TiO2 system[J]. Journal of Solid State Chemistry, 1978, 25(3):273-284.
[1] 徐建林, 刘晓琦, 杨文龙, 牛磊, 赵金强. Nano-Sb2O3/BEO/PP复合材料阻燃性能[J]. 材料工程, 2019, 47(1): 84-90.
[2] 蔡建明, 弭光宝, 高帆, 黄浩, 曹京霞, 黄旭, 曹春晓. 航空发动机用先进高温钛合金材料技术研究与发展[J]. 材料工程, 2016, 44(8): 1-10.
[3] 徐建林, 周生刚, 牛磊, 杨文龙, 王程程, 文琛. 不同表面活性剂处理的Sb2O3对PVC复合材料阻燃性能的影响[J]. 材料工程, 2016, 44(8): 64-69.
[4] 卢林刚, 陈英辉, 程哲, 杨守生, 邵高耸. 新型无卤膨胀/MH阻燃环氧树脂的制备及阻燃性能[J]. 材料工程, 2015, 43(5): 50-55.
[5] 赵红霞, 黄旭, 王宝, 雷力明. 热处理对Ti-35V-15Cr-0.15Si-0.05C合金热稳定性能的影响[J]. 材料工程, 2013, 0(7): 73-77.
[6] 王榕林, 孙加林, 卜景龙, 王志发. AlN微粉非等温氧化动力学研究[J]. 材料工程, 2011, 0(4): 29-32,37.
[7] 黄旭, 曹春晓, 马济民, 王宝, 高扬, 周尧和. 航空发动机钛燃烧及阻燃钛合金[J]. 材料工程, 1997, 0(8): 11-15.
[8] 石拓, 金荣福, 蔡琼英, 瞿稼. 丙烯酸环氧酯热解动力学及寿命预测[J]. 材料工程, 1991, 0(6): 16-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn