The non-isothermal oxidation characteristic and the microstructure of the oxidation products were systematically studied by TGA/DSC test methods associated with XRD,SEM and EDS analysis methods. Further, the influence mechanism of vanadium and chromium elements on the non-isothermal oxidation resistance of Ti-V-Cr type fireproof titanium alloys was discussed. The results show that, from room temperature to 1723K, the non-isothermal oxidation resistance obviously decreases with increasing of vanadium content. Simultaneously, the oxidation film thickness increases from 168μm to 370μm, and the oxidation film thickness of Ti-35V alloys is about 1.45 times that of Ti-25V alloys; whereas the non-isothermal oxidation resistance of Ti-V-Cr type fireproof titanium alloys gradually increases with increasing of vanadium content and the differences among these alloys are quite small. The oxidation film thickness changes from 110μm to 85μm, and the thickness of Ti-35V-15Cr decreases about 15.5% than that of Ti-25V-15Cr alloy. The non-isothermal oxidation resistance of Ti-V-Cr alloys is much higher than that of Ti-V alloys, and the main reasons are that the liquid V2O5 formed during non-isothermal oxidation greatly releases the inner stress of oxidation film, which improves the combination ability between oxidation film and alloy matrix and also prevent together with Cr2O3 and TiO2 the massive diffusion of oxygen to the alloy matrix. The non-isothermal oxidation resistance characteristic of Ti-V-Cr fireproof titanium alloys is described quantitatively by non-isothermal oxide mass gain curve and oxidation film thickness, which are consistent with the results of friction ignition test. Therefore, the fireproof property of titanium alloy can be predicted.
НОЧОВНАЯ Н А, АЛЕКСЕЕВ Е Б, ИЗОТОВА А Ю, др Пожаробезопасные титановые сплавы и особенности их применения[J]. Титан, 2012, (4): 42- 46.
2
STROBRIDGE T R, MOULDER J C, CLARK A F. Titanium combustion in turbine engines[R]. FAA-RD-79-51/NBSIR-79-1616. Springfield: National Technical Information Service, 1979.15-32.
HUANG Xu, CAO Chun-xiao, MA Ji-min, et al Titanium combustion in aero-engines and fire-resistant titanium alloys[J]. Journal of Materials Engineering, 1997, (8): 11- 15.
4
BERCZIK D M. Age hardenble beta titanium alloy[P]. United States Patent: 5176762, 1993-01-05.
5
STEVE T, CRAIG W Light weight, high strength, and corrosion resistance are required of titanium and niobium alloys for aerospace application[J]. Advanced Materials and Processes, 1995, (4): 23- 26.
MI Guang-bao, HUANG Xu, CAO Jing-xia, et al Ignition resistance performance and its theoretical analysis of Ti-V-Cr type fireproof titanium alloy[J]. Acta Metallurgica Sinica, 2014, 50 (5): 575- 586.
CAO Jing-xia, HUANG Xu, MI Guang-bao, et al Research progress on application technique of Ti-V-Cr fireproof titanium alloys[J]. Journal of Aeronautical Materials, 2014, 34 (4): 92- 97.
LAI Yun-jin, ZHANG Ping-xiang, XIN She-wei, et al Research progress on engineered technology of fireproof titanium alloy in China[J]. Rare Metal Materials and Engineering, 2015, 44 (8): 2067- 2073.
9
ANDERSON V, MANTY B. Titanium alloy ignition and combustion[R]. Florida: Pratt & Whitney Aircraft Group, Report No. 76083-30(Naval Air Development Center), 1978.10-32.
10
LVTJERING G, WILLIAMS J C. Titanium[M]. 2nd ed. New York: Springer Berlin Heidelberg, 2007.51-53.
11
БОРИСОВА Е А, СКЛЯРОВ Н М. Горение и Пожаробе-зопасность Титановых Сплавов[M]. Москва: ВИАМ, 2007.8-25.
12
LEYENS C, PETERS M. Titanium and Titanium Alloys: Fundamentals and Applications[M]. Weinheim: WILEY-VCH, 2003.342-345.
MI Guang-bao, CAO Chun-xiao, HUANG Xu, et al Ignition resistance performance and its mechanism of TC11 titanium alloy for aero-engine[J]. Journal of Aeronautical Materials, 2014, 34 (4): 83- 91.
16
MI G B, HUANG X, CAI J X, et al. Fireproof property and its mechanism of a new high temperature titanium alloy[A]. The 13th World Conference on Titanium[C]. San Diego, USA: TMS, 2015.16-20.
17
MI G B, HUANG X, CAO J X, et al Frictional ignition of Ti40 fireproof titanium alloys for aero-engine in oxygen-containing media[J]. Trans Nonferrous Met Soc China, 2013, 23 (8): 2270- 2275.
18
TRUNOV M A, SCHOENITZ M, ZHU X Y, et al Effect of polymorphic phase transformations in Al2O3 film on oxidation kinetics of aluminum powders[J]. Combustion and Flame, 2005, 140 (4): 310- 318.
19
TRUNOV M A, SCHOENITZ M, DREIZIN E L Effect of polymorphic phase transformations in alumina layer on ignition of aluminum particles[J]. Combustion Theory and Modelling, 2006, 10 (4): 603- 623.
MI Guang-bao, HUANG Xu, CAO Jing-xia, et al Theoretical research on oxide film fracture behavior during titanium particle ignition[J]. Journal of Aeronautical Materials, 2012, 32 (6): 25- 31.
21
MI G B, HUANG X S, LI P J, et al Non-isothermal oxidation and ignition prediction of titanium-chromium alloys[J]. Trans Nonferrous Met Soc China, 2012, 22 (10): 2409- 2415.
22
ЛЯКИШЕВ. Диаграммы Состояния Двойных Металлических Систем[M]. Москва: Машиностроение, 2000.397-398.
23
GOMES J E L, HUNTZ A M Comparison of the kinetics and morphologic properties of titanium, Ti-1[J]. 5Ni and Ti-2.5Cu during oxidation in pure oxygen between 600 and 820℃[J]. Oxidation of Metals, 1980, 14 (6): 471- 498.
24
SCHULZ O, EISENREICH N, KELZENBERG S, et al Non-isothermal and isothermal kinetics of high temperature oxidation of micrometer-sized titanium particles in air[J]. Thermochimica Acta, 2011, 517 (1-2): 98- 104.
25
HAGEL W C Anion diffusion in alpha-Cr2O3[J]. Journal of the American Ceramic Society, 1965, 48 (2): 70- 75.
XU Ling, TANG Chao-qun, DAI Lei, et al First-principles study of the electronic structure of N doping anatase TiO2[J]. Acta Phys Sin, 2007, 56 (2): 1048- 1053.
PENG Li-ping, XIA Zheng-cai, YIN Jian-wu First-principles calculation of rutile and anatase TiO2 intrinsic defect[J]. Acta Phys Sin, 2012, 61 (3): 037103.
28
HURLEN T On the defect structure of rutile[J]. Acta Chemica Scandinavica, 1959, 13 (2): 365- 376.
29
KOFSTAD P, HAUFFE K, KJOLLESDAL H Investigation on the oxidation mechanism of titanium[J]. Acta Chemica Scandinavica, 1958, 12 (2): 239- 266.
30
STRINGER J The oxidation of titanium in oxygen at high temperatures[J]. Acta Metallurgica, 1960, 8 (11): 758- 766.
31
UNNAM J, CLARK R K Oxidation of commercial purity titanium[J]. Oxidation of Metals, 1986, 26 (3-4): 231- 252.
32
ROSA C J Oxygen diffusion in alpha and beta titanium in temperature range of 932℃ to 1142℃[J]. Metallurgical Transactions, 1970, 1 (9): 2517- 2522.
33
WALLWORK G R, JENKINS A E Oxidation of titanium, zirconium, and hafnium[J]. Journal of the Electrochemical Society, 1959, 106 (1): 10- 14.
34
GERRITSEN H J, LEWIS H R Paramagnetic resonance of V4+ in TiO2[J]. Phys Rev, 1960, 119 (3): 1010- 1012.
35
LARS S, ANDERSSON T ESCA investigation of V2O5+TiO2 catalysts for the vapour phase oxidation of alkylpyridines[J]. J Chem Soc Faraday Trans, 1979, 75, 1356- 1370.
YANG Zhen-ni, LIU Qiang, ZHU Zhong-qi, et al Preparation and properties of V-doped TiO2 powders[J]. Materials Science and Engineering of Powder Metallurgy, 2009, 14 (1): 63- 66.
CHEN Jun, YAN Fei-nan, LIANG Li-ping, et al First-principles study on the optical properties of Cr-doped anatase TiO2[J]. Journal of Synthetic Crystals, 2011, 40 (3): 758- 762.
39
SOMIYA S, HIRANO S, KAMIYA S Phase relations of the Cr2O3-TiO2 system[J]. Journal of Solid State Chemistry, 1978, 25 (3): 273- 284.